OpenCloudOS-Kernel/arch/sparc/kernel/syscalls.S

302 lines
7.5 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/* SunOS's execv() call only specifies the argv argument, the
* environment settings are the same as the calling processes.
*/
sys64_execve:
set sys_execve, %g1
jmpl %g1, %g0
flushw
sys64_execveat:
set sys_execveat, %g1
jmpl %g1, %g0
flushw
#ifdef CONFIG_COMPAT
sunos_execv:
mov %g0, %o2
sys32_execve:
set compat_sys_execve, %g1
jmpl %g1, %g0
flushw
sys32_execveat:
set compat_sys_execveat, %g1
jmpl %g1, %g0
flushw
#endif
.align 32
#ifdef CONFIG_COMPAT
sys32_sigstack:
ba,pt %xcc, do_sys32_sigstack
mov %i6, %o2
#endif
.align 32
#ifdef CONFIG_COMPAT
sys32_sigreturn:
add %sp, PTREGS_OFF, %o0
call do_sigreturn32
add %o7, 1f-.-4, %o7
nop
#endif
sys_rt_sigreturn:
add %sp, PTREGS_OFF, %o0
call do_rt_sigreturn
add %o7, 1f-.-4, %o7
nop
#ifdef CONFIG_COMPAT
sys32_rt_sigreturn:
add %sp, PTREGS_OFF, %o0
call do_rt_sigreturn32
add %o7, 1f-.-4, %o7
nop
#endif
.align 32
1: ldx [%g6 + TI_FLAGS], %l5
andcc %l5, (_TIF_SYSCALL_TRACE|_TIF_SECCOMP|_TIF_SYSCALL_AUDIT|_TIF_SYSCALL_TRACEPOINT|_TIF_NOHZ), %g0
be,pt %icc, rtrap
nop
call syscall_trace_leave
add %sp, PTREGS_OFF, %o0
ba,pt %xcc, rtrap
nop
/* This is how fork() was meant to be done, 8 instruction entry.
*
* I questioned the following code briefly, let me clear things
* up so you must not reason on it like I did.
*
* Know the fork_kpsr etc. we use in the sparc32 port? We don't
* need it here because the only piece of window state we copy to
* the child is the CWP register. Even if the parent sleeps,
* we are safe because we stuck it into pt_regs of the parent
* so it will not change.
*
* XXX This raises the question, whether we can do the same on
* XXX sparc32 to get rid of fork_kpsr _and_ fork_kwim. The
* XXX answer is yes. We stick fork_kpsr in UREG_G0 and
* XXX fork_kwim in UREG_G1 (global registers are considered
* XXX volatile across a system call in the sparc ABI I think
* XXX if it isn't we can use regs->y instead, anyone who depends
* XXX upon the Y register being preserved across a fork deserves
* XXX to lose).
*
* In fact we should take advantage of that fact for other things
* during system calls...
*/
.align 32
sparc64: enable HAVE_COPY_THREAD_TLS This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since sparc does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and sparc is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on sparc which I will follow up later (if no one gets there before me). Once that is done we can get of another ARCH_WANTS_* macro. This patch just switches sparc64 over to HAVE_COPY_THREAD_TLS but not sparc32 which will be done in the next patch. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, sparc joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Note that sparc can't easily call into the syscalls directly because of its return value conventions when a new process is created which needs to clobber the UREG_I1 register in copy_thread{_tls()} and it needs to restore it if process creation fails. That's not a big deal since the new process creation calling convention makes things simpler. This removes sparc_do_fork() and replaces it with 3 clean helpers, sparc_fork(), sparc_vfork(), and sparc_clone(). That means a little more C code until the next patch unifies sparc 32bit and sparc64. It has the advantage that we can remove quite a bit of assembler and it makes the whole syscall.S process creation bits easier to read. The follow-up patch will remove the custom sparc_do_fork() helper for 32bi sparc and move sparc_fork(), sparc_vfork(), and sparc_clone() into a common process.c file. This allows us to remove quite a bit of custom assembly form 32bit sparc's entry.S file too and allows to remove even more code because now all helpers are shared between 32bit sparc and sparc64 instead of having to maintain two separate sparc_do_fork() implementations. For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guo Ren <guoren@kernel.org> Cc: linux-csky@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: sparclinux@vger.kernel.org See: d95b56c77ef ("openrisc: Cleanup copy_thread_tls docs and comments") See: 0b9f386c4be ("csky: Implement copy_thread_tls") Link: https://lore.kernel.org/r/20200512171527.570109-2-christian.brauner@ubuntu.com
2020-05-13 01:15:25 +08:00
sys_vfork:
flushw
ba,pt %xcc, sparc_vfork
add %sp, PTREGS_OFF, %o0
.align 32
sys_fork:
sparc64: enable HAVE_COPY_THREAD_TLS This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since sparc does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and sparc is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on sparc which I will follow up later (if no one gets there before me). Once that is done we can get of another ARCH_WANTS_* macro. This patch just switches sparc64 over to HAVE_COPY_THREAD_TLS but not sparc32 which will be done in the next patch. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, sparc joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Note that sparc can't easily call into the syscalls directly because of its return value conventions when a new process is created which needs to clobber the UREG_I1 register in copy_thread{_tls()} and it needs to restore it if process creation fails. That's not a big deal since the new process creation calling convention makes things simpler. This removes sparc_do_fork() and replaces it with 3 clean helpers, sparc_fork(), sparc_vfork(), and sparc_clone(). That means a little more C code until the next patch unifies sparc 32bit and sparc64. It has the advantage that we can remove quite a bit of assembler and it makes the whole syscall.S process creation bits easier to read. The follow-up patch will remove the custom sparc_do_fork() helper for 32bi sparc and move sparc_fork(), sparc_vfork(), and sparc_clone() into a common process.c file. This allows us to remove quite a bit of custom assembly form 32bit sparc's entry.S file too and allows to remove even more code because now all helpers are shared between 32bit sparc and sparc64 instead of having to maintain two separate sparc_do_fork() implementations. For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guo Ren <guoren@kernel.org> Cc: linux-csky@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: sparclinux@vger.kernel.org See: d95b56c77ef ("openrisc: Cleanup copy_thread_tls docs and comments") See: 0b9f386c4be ("csky: Implement copy_thread_tls") Link: https://lore.kernel.org/r/20200512171527.570109-2-christian.brauner@ubuntu.com
2020-05-13 01:15:25 +08:00
flushw
ba,pt %xcc, sparc_fork
add %sp, PTREGS_OFF, %o0
.align 32
sys_clone:
flushw
sparc64: enable HAVE_COPY_THREAD_TLS This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since sparc does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and sparc is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on sparc which I will follow up later (if no one gets there before me). Once that is done we can get of another ARCH_WANTS_* macro. This patch just switches sparc64 over to HAVE_COPY_THREAD_TLS but not sparc32 which will be done in the next patch. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, sparc joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Note that sparc can't easily call into the syscalls directly because of its return value conventions when a new process is created which needs to clobber the UREG_I1 register in copy_thread{_tls()} and it needs to restore it if process creation fails. That's not a big deal since the new process creation calling convention makes things simpler. This removes sparc_do_fork() and replaces it with 3 clean helpers, sparc_fork(), sparc_vfork(), and sparc_clone(). That means a little more C code until the next patch unifies sparc 32bit and sparc64. It has the advantage that we can remove quite a bit of assembler and it makes the whole syscall.S process creation bits easier to read. The follow-up patch will remove the custom sparc_do_fork() helper for 32bi sparc and move sparc_fork(), sparc_vfork(), and sparc_clone() into a common process.c file. This allows us to remove quite a bit of custom assembly form 32bit sparc's entry.S file too and allows to remove even more code because now all helpers are shared between 32bit sparc and sparc64 instead of having to maintain two separate sparc_do_fork() implementations. For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guo Ren <guoren@kernel.org> Cc: linux-csky@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: sparclinux@vger.kernel.org See: d95b56c77ef ("openrisc: Cleanup copy_thread_tls docs and comments") See: 0b9f386c4be ("csky: Implement copy_thread_tls") Link: https://lore.kernel.org/r/20200512171527.570109-2-christian.brauner@ubuntu.com
2020-05-13 01:15:25 +08:00
ba,pt %xcc, sparc_clone
add %sp, PTREGS_OFF, %o0
.globl ret_from_fork
ret_from_fork:
/* Clear current_thread_info()->new_child. */
stb %g0, [%g6 + TI_NEW_CHILD]
call schedule_tail
mov %g7, %o0
ldx [%sp + PTREGS_OFF + PT_V9_I0], %o0
brnz,pt %o0, ret_sys_call
ldx [%g6 + TI_FLAGS], %l0
ldx [%sp + PTREGS_OFF + PT_V9_G1], %l1
call %l1
ldx [%sp + PTREGS_OFF + PT_V9_G2], %o0
ba,pt %xcc, ret_sys_call
mov 0, %o0
.globl sparc_exit_group
.type sparc_exit_group,#function
sparc_exit_group:
sethi %hi(sys_exit_group), %g7
ba,pt %xcc, 1f
or %g7, %lo(sys_exit_group), %g7
.size sparc_exit_group,.-sparc_exit_group
.globl sparc_exit
.type sparc_exit,#function
sparc_exit:
sethi %hi(sys_exit), %g7
or %g7, %lo(sys_exit), %g7
1: rdpr %pstate, %g2
wrpr %g2, PSTATE_IE, %pstate
rdpr %otherwin, %g1
rdpr %cansave, %g3
add %g3, %g1, %g3
wrpr %g3, 0x0, %cansave
wrpr %g0, 0x0, %otherwin
wrpr %g2, 0x0, %pstate
jmpl %g7, %g0
stb %g0, [%g6 + TI_WSAVED]
.size sparc_exit,.-sparc_exit
linux_sparc_ni_syscall:
sethi %hi(sys_ni_syscall), %l7
ba,pt %xcc, 4f
or %l7, %lo(sys_ni_syscall), %l7
linux_syscall_trace32:
call syscall_trace_enter
add %sp, PTREGS_OFF, %o0
brnz,pn %o0, 3f
mov -ENOSYS, %o0
/* Syscall tracing can modify the registers. */
ldx [%sp + PTREGS_OFF + PT_V9_G1], %g1
sethi %hi(sys_call_table32), %l7
ldx [%sp + PTREGS_OFF + PT_V9_I0], %i0
or %l7, %lo(sys_call_table32), %l7
ldx [%sp + PTREGS_OFF + PT_V9_I1], %i1
ldx [%sp + PTREGS_OFF + PT_V9_I2], %i2
ldx [%sp + PTREGS_OFF + PT_V9_I3], %i3
ldx [%sp + PTREGS_OFF + PT_V9_I4], %i4
ldx [%sp + PTREGS_OFF + PT_V9_I5], %i5
cmp %g1, NR_syscalls
bgeu,pn %xcc, 3f
mov -ENOSYS, %o0
sll %g1, 2, %l4
srl %i0, 0, %o0
lduw [%l7 + %l4], %l7
srl %i4, 0, %o4
srl %i1, 0, %o1
srl %i2, 0, %o2
ba,pt %xcc, 5f
srl %i3, 0, %o3
linux_syscall_trace:
call syscall_trace_enter
add %sp, PTREGS_OFF, %o0
brnz,pn %o0, 3f
mov -ENOSYS, %o0
/* Syscall tracing can modify the registers. */
ldx [%sp + PTREGS_OFF + PT_V9_G1], %g1
sethi %hi(sys_call_table64), %l7
ldx [%sp + PTREGS_OFF + PT_V9_I0], %i0
or %l7, %lo(sys_call_table64), %l7
ldx [%sp + PTREGS_OFF + PT_V9_I1], %i1
ldx [%sp + PTREGS_OFF + PT_V9_I2], %i2
ldx [%sp + PTREGS_OFF + PT_V9_I3], %i3
ldx [%sp + PTREGS_OFF + PT_V9_I4], %i4
ldx [%sp + PTREGS_OFF + PT_V9_I5], %i5
cmp %g1, NR_syscalls
bgeu,pn %xcc, 3f
mov -ENOSYS, %o0
sll %g1, 2, %l4
mov %i0, %o0
lduw [%l7 + %l4], %l7
mov %i1, %o1
mov %i2, %o2
mov %i3, %o3
b,pt %xcc, 2f
mov %i4, %o4
/* Linux 32-bit system calls enter here... */
.align 32
.globl linux_sparc_syscall32
linux_sparc_syscall32:
/* Direct access to user regs, much faster. */
cmp %g1, NR_syscalls ! IEU1 Group
bgeu,pn %xcc, linux_sparc_ni_syscall ! CTI
srl %i0, 0, %o0 ! IEU0
sll %g1, 2, %l4 ! IEU0 Group
srl %i4, 0, %o4 ! IEU1
lduw [%l7 + %l4], %l7 ! Load
srl %i1, 0, %o1 ! IEU0 Group
ldx [%g6 + TI_FLAGS], %l0 ! Load
srl %i3, 0, %o3 ! IEU0
srl %i2, 0, %o2 ! IEU0 Group
andcc %l0, (_TIF_SYSCALL_TRACE|_TIF_SECCOMP|_TIF_SYSCALL_AUDIT|_TIF_SYSCALL_TRACEPOINT|_TIF_NOHZ), %g0
bne,pn %icc, linux_syscall_trace32 ! CTI
mov %i0, %l5 ! IEU1
5: call %l7 ! CTI Group brk forced
srl %i5, 0, %o5 ! IEU1
ba,pt %xcc, 3f
sra %o0, 0, %o0
/* Linux native system calls enter here... */
.align 32
.globl linux_sparc_syscall
linux_sparc_syscall:
/* Direct access to user regs, much faster. */
cmp %g1, NR_syscalls ! IEU1 Group
bgeu,pn %xcc, linux_sparc_ni_syscall ! CTI
mov %i0, %o0 ! IEU0
sll %g1, 2, %l4 ! IEU0 Group
mov %i1, %o1 ! IEU1
lduw [%l7 + %l4], %l7 ! Load
4: mov %i2, %o2 ! IEU0 Group
ldx [%g6 + TI_FLAGS], %l0 ! Load
mov %i3, %o3 ! IEU1
mov %i4, %o4 ! IEU0 Group
andcc %l0, (_TIF_SYSCALL_TRACE|_TIF_SECCOMP|_TIF_SYSCALL_AUDIT|_TIF_SYSCALL_TRACEPOINT|_TIF_NOHZ), %g0
bne,pn %icc, linux_syscall_trace ! CTI Group
mov %i0, %l5 ! IEU0
2: call %l7 ! CTI Group brk forced
mov %i5, %o5 ! IEU0
nop
3: stx %o0, [%sp + PTREGS_OFF + PT_V9_I0]
ret_sys_call:
ldx [%sp + PTREGS_OFF + PT_V9_TSTATE], %g3
mov %ulo(TSTATE_XCARRY | TSTATE_ICARRY), %g2
sllx %g2, 32, %g2
cmp %o0, -ERESTART_RESTARTBLOCK
bgeu,pn %xcc, 1f
andcc %l0, (_TIF_SYSCALL_TRACE|_TIF_SECCOMP|_TIF_SYSCALL_AUDIT|_TIF_SYSCALL_TRACEPOINT|_TIF_NOHZ), %g0
ldx [%sp + PTREGS_OFF + PT_V9_TNPC], %l1 ! pc = npc
2:
/* System call success, clear Carry condition code. */
andn %g3, %g2, %g3
3:
stx %g3, [%sp + PTREGS_OFF + PT_V9_TSTATE]
bne,pn %icc, linux_syscall_trace2
add %l1, 0x4, %l2 ! npc = npc+4
stx %l1, [%sp + PTREGS_OFF + PT_V9_TPC]
ba,pt %xcc, rtrap
stx %l2, [%sp + PTREGS_OFF + PT_V9_TNPC]
1:
/* Check if force_successful_syscall_return()
* was invoked.
*/
ldub [%g6 + TI_SYS_NOERROR], %l2
brnz,pn %l2, 2b
ldx [%sp + PTREGS_OFF + PT_V9_TNPC], %l1 ! pc = npc
/* System call failure, set Carry condition code.
* Also, get abs(errno) to return to the process.
*/
sub %g0, %o0, %o0
stx %o0, [%sp + PTREGS_OFF + PT_V9_I0]
ba,pt %xcc, 3b
or %g3, %g2, %g3
linux_syscall_trace2:
call syscall_trace_leave
add %sp, PTREGS_OFF, %o0
stx %l1, [%sp + PTREGS_OFF + PT_V9_TPC]
ba,pt %xcc, rtrap
stx %l2, [%sp + PTREGS_OFF + PT_V9_TNPC]