OpenCloudOS-Kernel/include/linux/pm_runtime.h

600 lines
20 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* pm_runtime.h - Device run-time power management helper functions.
*
* Copyright (C) 2009 Rafael J. Wysocki <rjw@sisk.pl>
*/
#ifndef _LINUX_PM_RUNTIME_H
#define _LINUX_PM_RUNTIME_H
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pm.h>
#include <linux/jiffies.h>
/* Runtime PM flag argument bits */
#define RPM_ASYNC 0x01 /* Request is asynchronous */
#define RPM_NOWAIT 0x02 /* Don't wait for concurrent
state change */
#define RPM_GET_PUT 0x04 /* Increment/decrement the
usage_count */
#define RPM_AUTO 0x08 /* Use autosuspend_delay */
/*
* Use this for defining a set of PM operations to be used in all situations
* (system suspend, hibernation or runtime PM).
*
* Note that the behaviour differs from the deprecated UNIVERSAL_DEV_PM_OPS()
* macro, which uses the provided callbacks for both runtime PM and system
* sleep, while DEFINE_RUNTIME_DEV_PM_OPS() uses pm_runtime_force_suspend()
* and pm_runtime_force_resume() for its system sleep callbacks.
*
* If the underlying dev_pm_ops struct symbol has to be exported, use
* EXPORT_RUNTIME_DEV_PM_OPS() or EXPORT_GPL_RUNTIME_DEV_PM_OPS() instead.
*/
#define DEFINE_RUNTIME_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn) \
_DEFINE_DEV_PM_OPS(name, pm_runtime_force_suspend, \
pm_runtime_force_resume, suspend_fn, \
resume_fn, idle_fn)
#define EXPORT_RUNTIME_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn) \
_EXPORT_DEV_PM_OPS(name, pm_runtime_force_suspend, pm_runtime_force_resume, \
suspend_fn, resume_fn, idle_fn, "", "")
#define EXPORT_GPL_RUNTIME_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn) \
_EXPORT_DEV_PM_OPS(name, pm_runtime_force_suspend, pm_runtime_force_resume, \
suspend_fn, resume_fn, idle_fn, "_gpl", "")
#define EXPORT_NS_RUNTIME_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn, ns) \
_EXPORT_DEV_PM_OPS(name, pm_runtime_force_suspend, pm_runtime_force_resume, \
suspend_fn, resume_fn, idle_fn, "", #ns)
#define EXPORT_NS_GPL_RUNTIME_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn, ns) \
_EXPORT_DEV_PM_OPS(name, pm_runtime_force_suspend, pm_runtime_force_resume, \
suspend_fn, resume_fn, idle_fn, "_gpl", #ns)
#ifdef CONFIG_PM
extern struct workqueue_struct *pm_wq;
static inline bool queue_pm_work(struct work_struct *work)
{
return queue_work(pm_wq, work);
}
extern int pm_generic_runtime_suspend(struct device *dev);
extern int pm_generic_runtime_resume(struct device *dev);
extern int pm_runtime_force_suspend(struct device *dev);
extern int pm_runtime_force_resume(struct device *dev);
extern int __pm_runtime_idle(struct device *dev, int rpmflags);
extern int __pm_runtime_suspend(struct device *dev, int rpmflags);
extern int __pm_runtime_resume(struct device *dev, int rpmflags);
extern int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count);
extern int pm_schedule_suspend(struct device *dev, unsigned int delay);
extern int __pm_runtime_set_status(struct device *dev, unsigned int status);
extern int pm_runtime_barrier(struct device *dev);
extern void pm_runtime_enable(struct device *dev);
extern void __pm_runtime_disable(struct device *dev, bool check_resume);
extern void pm_runtime_allow(struct device *dev);
extern void pm_runtime_forbid(struct device *dev);
extern void pm_runtime_no_callbacks(struct device *dev);
extern void pm_runtime_irq_safe(struct device *dev);
extern void __pm_runtime_use_autosuspend(struct device *dev, bool use);
extern void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);
PM-runtime: Switch autosuspend over to using hrtimers PM-runtime uses the timer infrastructure for autosuspend. This implies that the minimum time before autosuspending a device is in the range of 1 tick included to 2 ticks excluded -On arm64 this means between 4ms and 8ms with default jiffies configuration -And on arm, it is between 10ms and 20ms These values are quite high for embedded systems which sometimes want the duration to be in the range of 1 ms. It is possible to switch autosuspend over to using hrtimers to get finer granularity for short durations and take advantage of slack to retain some margins and get long timeouts with minimum wakeups. On an arm64 platform that uses 1ms for autosuspending timeout of its GPU, idle power is reduced by 10% with hrtimer. The latency impact on arm64 hikey octo cores is: - mark_last_busy: from 1.11 us to 1.25 us - rpm_suspend: from 15.54 us to 15.38 us [Only the code path of rpm_suspend() that starts hrtimer has been measured.] arm64 image (arm64 default defconfig) decreases by around 3KB with following details: $ size vmlinux-timer text data bss dec hex filename 12034646 6869268 386840 19290754 1265a82 vmlinux $ size vmlinux-hrtimer text data bss dec hex filename 12030550 6870164 387032 19287746 1264ec2 vmlinux The latency impact on arm 32bits snowball dual cores is : - mark_last_busy: from 0.31 us usec to 0.77 us - rpm_suspend: from 6.83 us to 6.67 usec The increase of the image for snowball platform that I used for testing performance impact, is neglictable (244B). $ size vmlinux-timer text data bss dec hex filename 7157961 2119580 264120 9541661 91981d build-ux500/vmlinux size vmlinux-hrtimer text data bss dec hex filename 7157773 2119884 264248 9541905 919911 vmlinux-hrtimer And arm 32bits image (multi_v7_defconfig) increases by around 1.7KB with following details: $ size vmlinux-timer text data bss dec hex filename 13304443 6803420 402768 20510631 138f7a7 vmlinux $ size vmlinux-hrtimer text data bss dec hex filename 13304299 6805276 402768 20512343 138fe57 vmlinux Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-12-14 22:22:25 +08:00
extern u64 pm_runtime_autosuspend_expiration(struct device *dev);
PM / Runtime: Use device PM QoS constraints (v2) Make the runtime PM core use device PM QoS constraints to check if it is allowed to suspend a given device, so that an error code is returned if the device's own PM QoS constraint is negative or one of its children has already been suspended for too long. If this is not the case, the maximum estimated time the device is allowed to be suspended, computed as the minimum of the device's PM QoS constraint and the PM QoS constraints of its children (reduced by the difference between the current time and their suspend times) is stored in a new device's PM field power.max_time_suspended_ns that can be used by the device's subsystem or PM domain to decide whether or not to put the device into lower-power (and presumably higher-latency) states later (if the constraint is 0, which means "no constraint", the power.max_time_suspended_ns is set to -1). Additionally, the time of execution of the subsystem-level .runtime_suspend() callback for the device is recorded in the new power.suspend_time field for later use by the device's subsystem or PM domain along with power.max_time_suspended_ns (it also is used by the core code when the device's parent is suspended). Introduce a new helper function, pm_runtime_update_max_time_suspended(), allowing subsystems and PM domains (or device drivers) to update the power.max_time_suspended_ns field, for example after changing the power state of a suspended device. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-12-01 07:01:31 +08:00
extern void pm_runtime_update_max_time_suspended(struct device *dev,
s64 delta_ns);
extern void pm_runtime_set_memalloc_noio(struct device *dev, bool enable);
extern void pm_runtime_get_suppliers(struct device *dev);
extern void pm_runtime_put_suppliers(struct device *dev);
extern void pm_runtime_new_link(struct device *dev);
extern void pm_runtime_drop_link(struct device_link *link);
extern void pm_runtime_release_supplier(struct device_link *link, bool check_idle);
extern int devm_pm_runtime_enable(struct device *dev);
/**
* pm_runtime_get_if_in_use - Conditionally bump up runtime PM usage counter.
* @dev: Target device.
*
* Increment the runtime PM usage counter of @dev if its runtime PM status is
* %RPM_ACTIVE and its runtime PM usage counter is greater than 0.
*/
static inline int pm_runtime_get_if_in_use(struct device *dev)
{
return pm_runtime_get_if_active(dev, false);
}
/**
* pm_suspend_ignore_children - Set runtime PM behavior regarding children.
* @dev: Target device.
* @enable: Whether or not to ignore possible dependencies on children.
*
* The dependencies of @dev on its children will not be taken into account by
* the runtime PM framework going forward if @enable is %true, or they will
* be taken into account otherwise.
*/
static inline void pm_suspend_ignore_children(struct device *dev, bool enable)
{
dev->power.ignore_children = enable;
}
/**
* pm_runtime_get_noresume - Bump up runtime PM usage counter of a device.
* @dev: Target device.
*/
static inline void pm_runtime_get_noresume(struct device *dev)
{
atomic_inc(&dev->power.usage_count);
}
/**
* pm_runtime_put_noidle - Drop runtime PM usage counter of a device.
* @dev: Target device.
*
* Decrement the runtime PM usage counter of @dev unless it is 0 already.
*/
static inline void pm_runtime_put_noidle(struct device *dev)
{
atomic_add_unless(&dev->power.usage_count, -1, 0);
}
/**
* pm_runtime_suspended - Check whether or not a device is runtime-suspended.
* @dev: Target device.
*
* Return %true if runtime PM is enabled for @dev and its runtime PM status is
* %RPM_SUSPENDED, or %false otherwise.
*
* Note that the return value of this function can only be trusted if it is
* called under the runtime PM lock of @dev or under conditions in which
* runtime PM cannot be either disabled or enabled for @dev and its runtime PM
* status cannot change.
*/
static inline bool pm_runtime_suspended(struct device *dev)
{
return dev->power.runtime_status == RPM_SUSPENDED
&& !dev->power.disable_depth;
}
/**
* pm_runtime_active - Check whether or not a device is runtime-active.
* @dev: Target device.
*
* Return %true if runtime PM is disabled for @dev or its runtime PM status is
* %RPM_ACTIVE, or %false otherwise.
*
* Note that the return value of this function can only be trusted if it is
* called under the runtime PM lock of @dev or under conditions in which
* runtime PM cannot be either disabled or enabled for @dev and its runtime PM
* status cannot change.
*/
static inline bool pm_runtime_active(struct device *dev)
{
return dev->power.runtime_status == RPM_ACTIVE
|| dev->power.disable_depth;
}
/**
* pm_runtime_status_suspended - Check if runtime PM status is "suspended".
* @dev: Target device.
*
* Return %true if the runtime PM status of @dev is %RPM_SUSPENDED, or %false
* otherwise, regardless of whether or not runtime PM has been enabled for @dev.
*
* Note that the return value of this function can only be trusted if it is
* called under the runtime PM lock of @dev or under conditions in which the
* runtime PM status of @dev cannot change.
*/
static inline bool pm_runtime_status_suspended(struct device *dev)
{
return dev->power.runtime_status == RPM_SUSPENDED;
}
/**
* pm_runtime_enabled - Check if runtime PM is enabled.
* @dev: Target device.
*
* Return %true if runtime PM is enabled for @dev or %false otherwise.
*
* Note that the return value of this function can only be trusted if it is
* called under the runtime PM lock of @dev or under conditions in which
* runtime PM cannot be either disabled or enabled for @dev.
*/
static inline bool pm_runtime_enabled(struct device *dev)
{
return !dev->power.disable_depth;
}
/**
* pm_runtime_has_no_callbacks - Check if runtime PM callbacks may be present.
* @dev: Target device.
*
* Return %true if @dev is a special device without runtime PM callbacks or
* %false otherwise.
*/
static inline bool pm_runtime_has_no_callbacks(struct device *dev)
{
return dev->power.no_callbacks;
}
/**
* pm_runtime_mark_last_busy - Update the last access time of a device.
* @dev: Target device.
*
* Update the last access time of @dev used by the runtime PM autosuspend
* mechanism to the current time as returned by ktime_get_mono_fast_ns().
*/
static inline void pm_runtime_mark_last_busy(struct device *dev)
{
WRITE_ONCE(dev->power.last_busy, ktime_get_mono_fast_ns());
}
/**
* pm_runtime_is_irq_safe - Check if runtime PM can work in interrupt context.
* @dev: Target device.
*
* Return %true if @dev has been marked as an "IRQ-safe" device (with respect
* to runtime PM), in which case its runtime PM callabcks can be expected to
* work correctly when invoked from interrupt handlers.
*/
static inline bool pm_runtime_is_irq_safe(struct device *dev)
{
return dev->power.irq_safe;
}
extern u64 pm_runtime_suspended_time(struct device *dev);
#else /* !CONFIG_PM */
static inline bool queue_pm_work(struct work_struct *work) { return false; }
static inline int pm_generic_runtime_suspend(struct device *dev) { return 0; }
static inline int pm_generic_runtime_resume(struct device *dev) { return 0; }
static inline int pm_runtime_force_suspend(struct device *dev) { return 0; }
static inline int pm_runtime_force_resume(struct device *dev) { return 0; }
static inline int __pm_runtime_idle(struct device *dev, int rpmflags)
{
return -ENOSYS;
}
static inline int __pm_runtime_suspend(struct device *dev, int rpmflags)
{
return -ENOSYS;
}
static inline int __pm_runtime_resume(struct device *dev, int rpmflags)
{
return 1;
}
static inline int pm_schedule_suspend(struct device *dev, unsigned int delay)
{
return -ENOSYS;
}
static inline int pm_runtime_get_if_in_use(struct device *dev)
{
return -EINVAL;
}
static inline int pm_runtime_get_if_active(struct device *dev,
bool ign_usage_count)
{
return -EINVAL;
}
static inline int __pm_runtime_set_status(struct device *dev,
unsigned int status) { return 0; }
static inline int pm_runtime_barrier(struct device *dev) { return 0; }
static inline void pm_runtime_enable(struct device *dev) {}
static inline void __pm_runtime_disable(struct device *dev, bool c) {}
static inline void pm_runtime_allow(struct device *dev) {}
static inline void pm_runtime_forbid(struct device *dev) {}
static inline int devm_pm_runtime_enable(struct device *dev) { return 0; }
static inline void pm_suspend_ignore_children(struct device *dev, bool enable) {}
static inline void pm_runtime_get_noresume(struct device *dev) {}
static inline void pm_runtime_put_noidle(struct device *dev) {}
static inline bool pm_runtime_suspended(struct device *dev) { return false; }
static inline bool pm_runtime_active(struct device *dev) { return true; }
static inline bool pm_runtime_status_suspended(struct device *dev) { return false; }
static inline bool pm_runtime_enabled(struct device *dev) { return false; }
static inline void pm_runtime_no_callbacks(struct device *dev) {}
static inline void pm_runtime_irq_safe(struct device *dev) {}
static inline bool pm_runtime_is_irq_safe(struct device *dev) { return false; }
static inline bool pm_runtime_has_no_callbacks(struct device *dev) { return false; }
static inline void pm_runtime_mark_last_busy(struct device *dev) {}
static inline void __pm_runtime_use_autosuspend(struct device *dev,
bool use) {}
static inline void pm_runtime_set_autosuspend_delay(struct device *dev,
int delay) {}
PM-runtime: Switch autosuspend over to using hrtimers PM-runtime uses the timer infrastructure for autosuspend. This implies that the minimum time before autosuspending a device is in the range of 1 tick included to 2 ticks excluded -On arm64 this means between 4ms and 8ms with default jiffies configuration -And on arm, it is between 10ms and 20ms These values are quite high for embedded systems which sometimes want the duration to be in the range of 1 ms. It is possible to switch autosuspend over to using hrtimers to get finer granularity for short durations and take advantage of slack to retain some margins and get long timeouts with minimum wakeups. On an arm64 platform that uses 1ms for autosuspending timeout of its GPU, idle power is reduced by 10% with hrtimer. The latency impact on arm64 hikey octo cores is: - mark_last_busy: from 1.11 us to 1.25 us - rpm_suspend: from 15.54 us to 15.38 us [Only the code path of rpm_suspend() that starts hrtimer has been measured.] arm64 image (arm64 default defconfig) decreases by around 3KB with following details: $ size vmlinux-timer text data bss dec hex filename 12034646 6869268 386840 19290754 1265a82 vmlinux $ size vmlinux-hrtimer text data bss dec hex filename 12030550 6870164 387032 19287746 1264ec2 vmlinux The latency impact on arm 32bits snowball dual cores is : - mark_last_busy: from 0.31 us usec to 0.77 us - rpm_suspend: from 6.83 us to 6.67 usec The increase of the image for snowball platform that I used for testing performance impact, is neglictable (244B). $ size vmlinux-timer text data bss dec hex filename 7157961 2119580 264120 9541661 91981d build-ux500/vmlinux size vmlinux-hrtimer text data bss dec hex filename 7157773 2119884 264248 9541905 919911 vmlinux-hrtimer And arm 32bits image (multi_v7_defconfig) increases by around 1.7KB with following details: $ size vmlinux-timer text data bss dec hex filename 13304443 6803420 402768 20510631 138f7a7 vmlinux $ size vmlinux-hrtimer text data bss dec hex filename 13304299 6805276 402768 20512343 138fe57 vmlinux Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-12-14 22:22:25 +08:00
static inline u64 pm_runtime_autosuspend_expiration(
struct device *dev) { return 0; }
static inline void pm_runtime_set_memalloc_noio(struct device *dev,
bool enable){}
static inline void pm_runtime_get_suppliers(struct device *dev) {}
static inline void pm_runtime_put_suppliers(struct device *dev) {}
static inline void pm_runtime_new_link(struct device *dev) {}
static inline void pm_runtime_drop_link(struct device_link *link) {}
static inline void pm_runtime_release_supplier(struct device_link *link,
bool check_idle) {}
#endif /* !CONFIG_PM */
/**
* pm_runtime_idle - Conditionally set up autosuspend of a device or suspend it.
* @dev: Target device.
*
* Invoke the "idle check" callback of @dev and, depending on its return value,
* set up autosuspend of @dev or suspend it (depending on whether or not
* autosuspend has been enabled for it).
*/
static inline int pm_runtime_idle(struct device *dev)
{
return __pm_runtime_idle(dev, 0);
}
/**
* pm_runtime_suspend - Suspend a device synchronously.
* @dev: Target device.
*/
static inline int pm_runtime_suspend(struct device *dev)
{
return __pm_runtime_suspend(dev, 0);
}
/**
* pm_runtime_autosuspend - Set up autosuspend of a device or suspend it.
* @dev: Target device.
*
* Set up autosuspend of @dev or suspend it (depending on whether or not
* autosuspend is enabled for it) without engaging its "idle check" callback.
*/
static inline int pm_runtime_autosuspend(struct device *dev)
{
return __pm_runtime_suspend(dev, RPM_AUTO);
}
/**
* pm_runtime_resume - Resume a device synchronously.
* @dev: Target device.
*/
static inline int pm_runtime_resume(struct device *dev)
{
return __pm_runtime_resume(dev, 0);
}
/**
* pm_request_idle - Queue up "idle check" execution for a device.
* @dev: Target device.
*
* Queue up a work item to run an equivalent of pm_runtime_idle() for @dev
* asynchronously.
*/
static inline int pm_request_idle(struct device *dev)
{
return __pm_runtime_idle(dev, RPM_ASYNC);
}
/**
* pm_request_resume - Queue up runtime-resume of a device.
* @dev: Target device.
*/
static inline int pm_request_resume(struct device *dev)
{
return __pm_runtime_resume(dev, RPM_ASYNC);
}
/**
* pm_request_autosuspend - Queue up autosuspend of a device.
* @dev: Target device.
*
* Queue up a work item to run an equivalent pm_runtime_autosuspend() for @dev
* asynchronously.
*/
static inline int pm_request_autosuspend(struct device *dev)
{
return __pm_runtime_suspend(dev, RPM_ASYNC | RPM_AUTO);
}
/**
* pm_runtime_get - Bump up usage counter and queue up resume of a device.
* @dev: Target device.
*
* Bump up the runtime PM usage counter of @dev and queue up a work item to
* carry out runtime-resume of it.
*/
static inline int pm_runtime_get(struct device *dev)
{
return __pm_runtime_resume(dev, RPM_GET_PUT | RPM_ASYNC);
}
/**
* pm_runtime_get_sync - Bump up usage counter of a device and resume it.
* @dev: Target device.
*
* Bump up the runtime PM usage counter of @dev and carry out runtime-resume of
* it synchronously.
*
* The possible return values of this function are the same as for
* pm_runtime_resume() and the runtime PM usage counter of @dev remains
* incremented in all cases, even if it returns an error code.
* Consider using pm_runtime_resume_and_get() instead of it, especially
* if its return value is checked by the caller, as this is likely to result
* in cleaner code.
*/
static inline int pm_runtime_get_sync(struct device *dev)
{
return __pm_runtime_resume(dev, RPM_GET_PUT);
}
/**
* pm_runtime_resume_and_get - Bump up usage counter of a device and resume it.
* @dev: Target device.
*
* Resume @dev synchronously and if that is successful, increment its runtime
* PM usage counter. Return 0 if the runtime PM usage counter of @dev has been
* incremented or a negative error code otherwise.
*/
static inline int pm_runtime_resume_and_get(struct device *dev)
{
int ret;
ret = __pm_runtime_resume(dev, RPM_GET_PUT);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
return 0;
}
/**
* pm_runtime_put - Drop device usage counter and queue up "idle check" if 0.
* @dev: Target device.
*
* Decrement the runtime PM usage counter of @dev and if it turns out to be
* equal to 0, queue up a work item for @dev like in pm_request_idle().
*/
static inline int pm_runtime_put(struct device *dev)
{
return __pm_runtime_idle(dev, RPM_GET_PUT | RPM_ASYNC);
}
/**
* pm_runtime_put_autosuspend - Drop device usage counter and queue autosuspend if 0.
* @dev: Target device.
*
* Decrement the runtime PM usage counter of @dev and if it turns out to be
* equal to 0, queue up a work item for @dev like in pm_request_autosuspend().
*/
static inline int pm_runtime_put_autosuspend(struct device *dev)
{
return __pm_runtime_suspend(dev,
RPM_GET_PUT | RPM_ASYNC | RPM_AUTO);
}
/**
* pm_runtime_put_sync - Drop device usage counter and run "idle check" if 0.
* @dev: Target device.
*
* Decrement the runtime PM usage counter of @dev and if it turns out to be
* equal to 0, invoke the "idle check" callback of @dev and, depending on its
* return value, set up autosuspend of @dev or suspend it (depending on whether
* or not autosuspend has been enabled for it).
*
* The possible return values of this function are the same as for
* pm_runtime_idle() and the runtime PM usage counter of @dev remains
* decremented in all cases, even if it returns an error code.
*/
static inline int pm_runtime_put_sync(struct device *dev)
{
return __pm_runtime_idle(dev, RPM_GET_PUT);
}
/**
* pm_runtime_put_sync_suspend - Drop device usage counter and suspend if 0.
* @dev: Target device.
*
* Decrement the runtime PM usage counter of @dev and if it turns out to be
* equal to 0, carry out runtime-suspend of @dev synchronously.
*
* The possible return values of this function are the same as for
* pm_runtime_suspend() and the runtime PM usage counter of @dev remains
* decremented in all cases, even if it returns an error code.
*/
static inline int pm_runtime_put_sync_suspend(struct device *dev)
{
return __pm_runtime_suspend(dev, RPM_GET_PUT);
}
/**
* pm_runtime_put_sync_autosuspend - Drop device usage counter and autosuspend if 0.
* @dev: Target device.
*
* Decrement the runtime PM usage counter of @dev and if it turns out to be
* equal to 0, set up autosuspend of @dev or suspend it synchronously (depending
* on whether or not autosuspend has been enabled for it).
*
* The possible return values of this function are the same as for
* pm_runtime_autosuspend() and the runtime PM usage counter of @dev remains
* decremented in all cases, even if it returns an error code.
*/
static inline int pm_runtime_put_sync_autosuspend(struct device *dev)
{
return __pm_runtime_suspend(dev, RPM_GET_PUT | RPM_AUTO);
}
/**
* pm_runtime_set_active - Set runtime PM status to "active".
* @dev: Target device.
*
* Set the runtime PM status of @dev to %RPM_ACTIVE and ensure that dependencies
* of it will be taken into account.
*
* It is not valid to call this function for devices with runtime PM enabled.
*/
static inline int pm_runtime_set_active(struct device *dev)
{
return __pm_runtime_set_status(dev, RPM_ACTIVE);
}
/**
* pm_runtime_set_suspended - Set runtime PM status to "suspended".
* @dev: Target device.
*
* Set the runtime PM status of @dev to %RPM_SUSPENDED and ensure that
* dependencies of it will be taken into account.
*
* It is not valid to call this function for devices with runtime PM enabled.
*/
static inline int pm_runtime_set_suspended(struct device *dev)
{
return __pm_runtime_set_status(dev, RPM_SUSPENDED);
}
/**
* pm_runtime_disable - Disable runtime PM for a device.
* @dev: Target device.
*
* Prevent the runtime PM framework from working with @dev (by incrementing its
* "blocking" counter).
*
* For each invocation of this function for @dev there must be a matching
* pm_runtime_enable() call in order for runtime PM to be enabled for it.
*/
static inline void pm_runtime_disable(struct device *dev)
{
__pm_runtime_disable(dev, true);
}
/**
* pm_runtime_use_autosuspend - Allow autosuspend to be used for a device.
* @dev: Target device.
*
* Allow the runtime PM autosuspend mechanism to be used for @dev whenever
* requested (or "autosuspend" will be handled as direct runtime-suspend for
* it).
*
* NOTE: It's important to undo this with pm_runtime_dont_use_autosuspend()
* at driver exit time unless your driver initially enabled pm_runtime
* with devm_pm_runtime_enable() (which handles it for you).
*/
static inline void pm_runtime_use_autosuspend(struct device *dev)
{
__pm_runtime_use_autosuspend(dev, true);
}
/**
* pm_runtime_dont_use_autosuspend - Prevent autosuspend from being used.
* @dev: Target device.
*
* Prevent the runtime PM autosuspend mechanism from being used for @dev which
* means that "autosuspend" will be handled as direct runtime-suspend for it
* going forward.
*/
static inline void pm_runtime_dont_use_autosuspend(struct device *dev)
{
__pm_runtime_use_autosuspend(dev, false);
}
#endif