OpenCloudOS-Kernel/drivers/block/zram/zram_drv.h

123 lines
3.3 KiB
C
Raw Normal View History

/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
* 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
*/
#ifndef _ZRAM_DRV_H_
#define _ZRAM_DRV_H_
#include <linux/spinlock.h>
zsmalloc: move it under mm This patch moves zsmalloc under mm directory. Before that, description will explain why we have needed custom allocator. Zsmalloc is a new slab-based memory allocator for storing compressed pages. It is designed for low fragmentation and high allocation success rate on large object, but <= PAGE_SIZE allocations. zsmalloc differs from the kernel slab allocator in two primary ways to achieve these design goals. zsmalloc never requires high order page allocations to back slabs, or "size classes" in zsmalloc terms. Instead it allows multiple single-order pages to be stitched together into a "zspage" which backs the slab. This allows for higher allocation success rate under memory pressure. Also, zsmalloc allows objects to span page boundaries within the zspage. This allows for lower fragmentation than could be had with the kernel slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the kernel slab allocator, if a page compresses to 60% of it original size, the memory savings gained through compression is lost in fragmentation because another object of the same size can't be stored in the leftover space. This ability to span pages results in zsmalloc allocations not being directly addressable by the user. The user is given an non-dereferencable handle in response to an allocation request. That handle must be mapped, using zs_map_object(), which returns a pointer to the mapped region that can be used. The mapping is necessary since the object data may reside in two different noncontigious pages. The zsmalloc fulfills the allocation needs for zram perfectly [sjenning@linux.vnet.ibm.com: borrow Seth's quote] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Nitin Gupta <ngupta@vflare.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-31 07:45:50 +08:00
#include <linux/zsmalloc.h>
#include "zcomp.h"
/*-- Configurable parameters */
/*
* Pages that compress to size greater than this are stored
* uncompressed in memory.
*/
static const size_t max_zpage_size = PAGE_SIZE / 4 * 3;
/*
* NOTE: max_zpage_size must be less than or equal to:
* ZS_MAX_ALLOC_SIZE. Otherwise, zs_malloc() would
* always return failure.
*/
/*-- End of configurable params */
#define SECTOR_SHIFT 9
#define SECTORS_PER_PAGE_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define SECTORS_PER_PAGE (1 << SECTORS_PER_PAGE_SHIFT)
#define ZRAM_LOGICAL_BLOCK_SHIFT 12
#define ZRAM_LOGICAL_BLOCK_SIZE (1 << ZRAM_LOGICAL_BLOCK_SHIFT)
#define ZRAM_SECTOR_PER_LOGICAL_BLOCK \
(1 << (ZRAM_LOGICAL_BLOCK_SHIFT - SECTOR_SHIFT))
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
/*
* The lower ZRAM_FLAG_SHIFT bits of table.value is for
* object size (excluding header), the higher bits is for
* zram_pageflags.
*
* zram is mainly used for memory efficiency so we want to keep memory
* footprint small so we can squeeze size and flags into a field.
* The lower ZRAM_FLAG_SHIFT bits is for object size (excluding header),
* the higher bits is for zram_pageflags.
*/
#define ZRAM_FLAG_SHIFT 24
/* Flags for zram pages (table[page_no].value) */
enum zram_pageflags {
/* Page consists entirely of zeros */
ZRAM_ZERO = ZRAM_FLAG_SHIFT,
ZRAM_ACCESS, /* page is now accessed */
__NR_ZRAM_PAGEFLAGS,
};
/*-- Data structures */
/* Allocated for each disk page */
struct zram_table_entry {
unsigned long handle;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
unsigned long value;
};
struct zram_stats {
atomic64_t compr_data_size; /* compressed size of pages stored */
atomic64_t num_reads; /* failed + successful */
atomic64_t num_writes; /* --do-- */
atomic64_t failed_reads; /* can happen when memory is too low */
atomic64_t failed_writes; /* can happen when memory is too low */
atomic64_t invalid_io; /* non-page-aligned I/O requests */
atomic64_t notify_free; /* no. of swap slot free notifications */
atomic64_t zero_pages; /* no. of zero filled pages */
atomic64_t pages_stored; /* no. of pages currently stored */
atomic_long_t max_used_pages; /* no. of maximum pages stored */
};
struct zram_meta {
struct zram_table_entry *table;
struct zs_pool *mem_pool;
};
struct zram {
struct zram_meta *meta;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
struct zcomp *comp;
struct gendisk *disk;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
/* Prevent concurrent execution of device init */
struct rw_semaphore init_lock;
/*
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
* the number of pages zram can consume for storing compressed data
*/
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
unsigned long limit_pages;
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
int max_comp_streams;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
struct zram_stats stats;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
atomic_t refcount; /* refcount for zram_meta */
/* wait all IO under all of cpu are done */
wait_queue_head_t io_done;
/*
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
* This is the limit on amount of *uncompressed* worth of data
* we can store in a disk.
*/
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
u64 disksize; /* bytes */
char compressor[10];
/*
* zram is claimed so open request will be failed
*/
bool claim; /* Protected by bdev->bd_mutex */
};
#endif