OpenCloudOS-Kernel/drivers/scsi/hisi_sas/hisi_sas_v2_hw.c

3693 lines
108 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016 Linaro Ltd.
* Copyright (c) 2016 Hisilicon Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include "hisi_sas.h"
#define DRV_NAME "hisi_sas_v2_hw"
/* global registers need init*/
#define DLVRY_QUEUE_ENABLE 0x0
#define IOST_BASE_ADDR_LO 0x8
#define IOST_BASE_ADDR_HI 0xc
#define ITCT_BASE_ADDR_LO 0x10
#define ITCT_BASE_ADDR_HI 0x14
#define IO_BROKEN_MSG_ADDR_LO 0x18
#define IO_BROKEN_MSG_ADDR_HI 0x1c
#define PHY_CONTEXT 0x20
#define PHY_STATE 0x24
#define PHY_PORT_NUM_MA 0x28
#define PORT_STATE 0x2c
#define PORT_STATE_PHY8_PORT_NUM_OFF 16
#define PORT_STATE_PHY8_PORT_NUM_MSK (0xf << PORT_STATE_PHY8_PORT_NUM_OFF)
#define PORT_STATE_PHY8_CONN_RATE_OFF 20
#define PORT_STATE_PHY8_CONN_RATE_MSK (0xf << PORT_STATE_PHY8_CONN_RATE_OFF)
#define PHY_CONN_RATE 0x30
#define HGC_TRANS_TASK_CNT_LIMIT 0x38
#define AXI_AHB_CLK_CFG 0x3c
#define ITCT_CLR 0x44
#define ITCT_CLR_EN_OFF 16
#define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF)
#define ITCT_DEV_OFF 0
#define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF)
#define AXI_USER1 0x48
#define AXI_USER2 0x4c
#define IO_SATA_BROKEN_MSG_ADDR_LO 0x58
#define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c
#define SATA_INITI_D2H_STORE_ADDR_LO 0x60
#define SATA_INITI_D2H_STORE_ADDR_HI 0x64
#define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84
#define HGC_SAS_TXFAIL_RETRY_CTRL 0x88
#define HGC_GET_ITV_TIME 0x90
#define DEVICE_MSG_WORK_MODE 0x94
#define OPENA_WT_CONTI_TIME 0x9c
#define I_T_NEXUS_LOSS_TIME 0xa0
#define MAX_CON_TIME_LIMIT_TIME 0xa4
#define BUS_INACTIVE_LIMIT_TIME 0xa8
#define REJECT_TO_OPEN_LIMIT_TIME 0xac
#define CFG_AGING_TIME 0xbc
#define HGC_DFX_CFG2 0xc0
#define HGC_IOMB_PROC1_STATUS 0x104
#define CFG_1US_TIMER_TRSH 0xcc
#define HGC_LM_DFX_STATUS2 0x128
#define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0
#define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \
HGC_LM_DFX_STATUS2_IOSTLIST_OFF)
#define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12
#define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \
HGC_LM_DFX_STATUS2_ITCTLIST_OFF)
#define HGC_CQE_ECC_ADDR 0x13c
#define HGC_CQE_ECC_1B_ADDR_OFF 0
#define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF)
#define HGC_CQE_ECC_MB_ADDR_OFF 8
#define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF)
#define HGC_IOST_ECC_ADDR 0x140
#define HGC_IOST_ECC_1B_ADDR_OFF 0
#define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF)
#define HGC_IOST_ECC_MB_ADDR_OFF 16
#define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF)
#define HGC_DQE_ECC_ADDR 0x144
#define HGC_DQE_ECC_1B_ADDR_OFF 0
#define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF)
#define HGC_DQE_ECC_MB_ADDR_OFF 16
#define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF)
#define HGC_INVLD_DQE_INFO 0x148
#define HGC_INVLD_DQE_INFO_FB_CH0_OFF 9
#define HGC_INVLD_DQE_INFO_FB_CH0_MSK (0x1 << HGC_INVLD_DQE_INFO_FB_CH0_OFF)
#define HGC_INVLD_DQE_INFO_FB_CH3_OFF 18
#define HGC_ITCT_ECC_ADDR 0x150
#define HGC_ITCT_ECC_1B_ADDR_OFF 0
#define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_1B_ADDR_OFF)
#define HGC_ITCT_ECC_MB_ADDR_OFF 16
#define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_MB_ADDR_OFF)
#define HGC_AXI_FIFO_ERR_INFO 0x154
#define AXI_ERR_INFO_OFF 0
#define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF)
#define FIFO_ERR_INFO_OFF 8
#define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF)
#define INT_COAL_EN 0x19c
#define OQ_INT_COAL_TIME 0x1a0
#define OQ_INT_COAL_CNT 0x1a4
#define ENT_INT_COAL_TIME 0x1a8
#define ENT_INT_COAL_CNT 0x1ac
#define OQ_INT_SRC 0x1b0
#define OQ_INT_SRC_MSK 0x1b4
#define ENT_INT_SRC1 0x1b8
#define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0
#define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF)
#define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8
#define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF)
#define ENT_INT_SRC2 0x1bc
#define ENT_INT_SRC3 0x1c0
#define ENT_INT_SRC3_WP_DEPTH_OFF 8
#define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9
#define ENT_INT_SRC3_RP_DEPTH_OFF 10
#define ENT_INT_SRC3_AXI_OFF 11
#define ENT_INT_SRC3_FIFO_OFF 12
#define ENT_INT_SRC3_LM_OFF 14
#define ENT_INT_SRC3_ITC_INT_OFF 15
#define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF)
#define ENT_INT_SRC3_ABT_OFF 16
#define ENT_INT_SRC_MSK1 0x1c4
#define ENT_INT_SRC_MSK2 0x1c8
#define ENT_INT_SRC_MSK3 0x1cc
#define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31
#define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF)
#define SAS_ECC_INTR 0x1e8
#define SAS_ECC_INTR_DQE_ECC_1B_OFF 0
#define SAS_ECC_INTR_DQE_ECC_MB_OFF 1
#define SAS_ECC_INTR_IOST_ECC_1B_OFF 2
#define SAS_ECC_INTR_IOST_ECC_MB_OFF 3
#define SAS_ECC_INTR_ITCT_ECC_MB_OFF 4
#define SAS_ECC_INTR_ITCT_ECC_1B_OFF 5
#define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 6
#define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 7
#define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 8
#define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 9
#define SAS_ECC_INTR_CQE_ECC_1B_OFF 10
#define SAS_ECC_INTR_CQE_ECC_MB_OFF 11
#define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 12
#define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 13
#define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 14
#define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 15
#define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 16
#define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 17
#define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 18
#define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 19
#define SAS_ECC_INTR_MSK 0x1ec
#define HGC_ERR_STAT_EN 0x238
#define CQE_SEND_CNT 0x248
#define DLVRY_Q_0_BASE_ADDR_LO 0x260
#define DLVRY_Q_0_BASE_ADDR_HI 0x264
#define DLVRY_Q_0_DEPTH 0x268
#define DLVRY_Q_0_WR_PTR 0x26c
#define DLVRY_Q_0_RD_PTR 0x270
#define HYPER_STREAM_ID_EN_CFG 0xc80
#define OQ0_INT_SRC_MSK 0xc90
#define COMPL_Q_0_BASE_ADDR_LO 0x4e0
#define COMPL_Q_0_BASE_ADDR_HI 0x4e4
#define COMPL_Q_0_DEPTH 0x4e8
#define COMPL_Q_0_WR_PTR 0x4ec
#define COMPL_Q_0_RD_PTR 0x4f0
#define HGC_RXM_DFX_STATUS14 0xae8
#define HGC_RXM_DFX_STATUS14_MEM0_OFF 0
#define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM0_OFF)
#define HGC_RXM_DFX_STATUS14_MEM1_OFF 9
#define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM1_OFF)
#define HGC_RXM_DFX_STATUS14_MEM2_OFF 18
#define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM2_OFF)
#define HGC_RXM_DFX_STATUS15 0xaec
#define HGC_RXM_DFX_STATUS15_MEM3_OFF 0
#define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \
HGC_RXM_DFX_STATUS15_MEM3_OFF)
/* phy registers need init */
#define PORT_BASE (0x2000)
#define PHY_CFG (PORT_BASE + 0x0)
#define HARD_PHY_LINKRATE (PORT_BASE + 0x4)
#define PHY_CFG_ENA_OFF 0
#define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF)
#define PHY_CFG_DC_OPT_OFF 2
#define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF)
#define PROG_PHY_LINK_RATE (PORT_BASE + 0x8)
#define PROG_PHY_LINK_RATE_MAX_OFF 0
#define PROG_PHY_LINK_RATE_MAX_MSK (0xff << PROG_PHY_LINK_RATE_MAX_OFF)
#define PHY_CTRL (PORT_BASE + 0x14)
#define PHY_CTRL_RESET_OFF 0
#define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF)
#define SAS_PHY_CTRL (PORT_BASE + 0x20)
#define SL_CFG (PORT_BASE + 0x84)
#define PHY_PCN (PORT_BASE + 0x44)
#define SL_TOUT_CFG (PORT_BASE + 0x8c)
#define SL_CONTROL (PORT_BASE + 0x94)
#define SL_CONTROL_NOTIFY_EN_OFF 0
#define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF)
#define SL_CONTROL_CTA_OFF 17
#define SL_CONTROL_CTA_MSK (0x1 << SL_CONTROL_CTA_OFF)
#define RX_PRIMS_STATUS (PORT_BASE + 0x98)
#define RX_BCAST_CHG_OFF 1
#define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF)
#define TX_ID_DWORD0 (PORT_BASE + 0x9c)
#define TX_ID_DWORD1 (PORT_BASE + 0xa0)
#define TX_ID_DWORD2 (PORT_BASE + 0xa4)
#define TX_ID_DWORD3 (PORT_BASE + 0xa8)
#define TX_ID_DWORD4 (PORT_BASE + 0xaC)
#define TX_ID_DWORD5 (PORT_BASE + 0xb0)
#define TX_ID_DWORD6 (PORT_BASE + 0xb4)
#define TXID_AUTO (PORT_BASE + 0xb8)
#define TXID_AUTO_CT3_OFF 1
#define TXID_AUTO_CT3_MSK (0x1 << TXID_AUTO_CT3_OFF)
#define TXID_AUTO_CTB_OFF 11
#define TXID_AUTO_CTB_MSK (0x1 << TXID_AUTO_CTB_OFF)
#define TX_HARDRST_OFF 2
#define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF)
#define RX_IDAF_DWORD0 (PORT_BASE + 0xc4)
#define RX_IDAF_DWORD1 (PORT_BASE + 0xc8)
#define RX_IDAF_DWORD2 (PORT_BASE + 0xcc)
#define RX_IDAF_DWORD3 (PORT_BASE + 0xd0)
#define RX_IDAF_DWORD4 (PORT_BASE + 0xd4)
#define RX_IDAF_DWORD5 (PORT_BASE + 0xd8)
#define RX_IDAF_DWORD6 (PORT_BASE + 0xdc)
#define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc)
#define CON_CONTROL (PORT_BASE + 0x118)
#define CON_CONTROL_CFG_OPEN_ACC_STP_OFF 0
#define CON_CONTROL_CFG_OPEN_ACC_STP_MSK \
(0x01 << CON_CONTROL_CFG_OPEN_ACC_STP_OFF)
#define DONE_RECEIVED_TIME (PORT_BASE + 0x11c)
#define CHL_INT0 (PORT_BASE + 0x1b4)
#define CHL_INT0_HOTPLUG_TOUT_OFF 0
#define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF)
#define CHL_INT0_SL_RX_BCST_ACK_OFF 1
#define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF)
#define CHL_INT0_SL_PHY_ENABLE_OFF 2
#define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF)
#define CHL_INT0_NOT_RDY_OFF 4
#define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF)
#define CHL_INT0_PHY_RDY_OFF 5
#define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF)
#define CHL_INT1 (PORT_BASE + 0x1b8)
#define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15
#define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF)
#define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17
#define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF)
#define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19
#define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20
#define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21
#define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22
#define CHL_INT2 (PORT_BASE + 0x1bc)
#define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0
#define CHL_INT0_MSK (PORT_BASE + 0x1c0)
#define CHL_INT1_MSK (PORT_BASE + 0x1c4)
#define CHL_INT2_MSK (PORT_BASE + 0x1c8)
#define CHL_INT_COAL_EN (PORT_BASE + 0x1d0)
#define DMA_TX_DFX0 (PORT_BASE + 0x200)
#define DMA_TX_DFX1 (PORT_BASE + 0x204)
#define DMA_TX_DFX1_IPTT_OFF 0
#define DMA_TX_DFX1_IPTT_MSK (0xffff << DMA_TX_DFX1_IPTT_OFF)
#define DMA_TX_FIFO_DFX0 (PORT_BASE + 0x240)
#define PORT_DFX0 (PORT_BASE + 0x258)
#define LINK_DFX2 (PORT_BASE + 0X264)
#define LINK_DFX2_RCVR_HOLD_STS_OFF 9
#define LINK_DFX2_RCVR_HOLD_STS_MSK (0x1 << LINK_DFX2_RCVR_HOLD_STS_OFF)
#define LINK_DFX2_SEND_HOLD_STS_OFF 10
#define LINK_DFX2_SEND_HOLD_STS_MSK (0x1 << LINK_DFX2_SEND_HOLD_STS_OFF)
#define SAS_ERR_CNT4_REG (PORT_BASE + 0x290)
#define SAS_ERR_CNT6_REG (PORT_BASE + 0x298)
#define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0)
#define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4)
#define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8)
#define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc)
#define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0)
#define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4)
#define DMA_TX_STATUS (PORT_BASE + 0x2d0)
#define DMA_TX_STATUS_BUSY_OFF 0
#define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF)
#define DMA_RX_STATUS (PORT_BASE + 0x2e8)
#define DMA_RX_STATUS_BUSY_OFF 0
#define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF)
#define AXI_CFG (0x5100)
#define AM_CFG_MAX_TRANS (0x5010)
#define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014)
#define AXI_MASTER_CFG_BASE (0x5000)
#define AM_CTRL_GLOBAL (0x0)
#define AM_CURR_TRANS_RETURN (0x150)
/* HW dma structures */
/* Delivery queue header */
/* dw0 */
#define CMD_HDR_ABORT_FLAG_OFF 0
#define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF)
#define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2
#define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF)
#define CMD_HDR_RESP_REPORT_OFF 5
#define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF)
#define CMD_HDR_TLR_CTRL_OFF 6
#define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF)
#define CMD_HDR_PHY_ID_OFF 8
#define CMD_HDR_PHY_ID_MSK (0x1ff << CMD_HDR_PHY_ID_OFF)
#define CMD_HDR_FORCE_PHY_OFF 17
#define CMD_HDR_FORCE_PHY_MSK (0x1 << CMD_HDR_FORCE_PHY_OFF)
#define CMD_HDR_PORT_OFF 18
#define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF)
#define CMD_HDR_PRIORITY_OFF 27
#define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF)
#define CMD_HDR_CMD_OFF 29
#define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF)
/* dw1 */
#define CMD_HDR_DIR_OFF 5
#define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF)
#define CMD_HDR_RESET_OFF 7
#define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF)
#define CMD_HDR_VDTL_OFF 10
#define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF)
#define CMD_HDR_FRAME_TYPE_OFF 11
#define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF)
#define CMD_HDR_DEV_ID_OFF 16
#define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF)
/* dw2 */
#define CMD_HDR_CFL_OFF 0
#define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF)
#define CMD_HDR_NCQ_TAG_OFF 10
#define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF)
#define CMD_HDR_MRFL_OFF 15
#define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF)
#define CMD_HDR_SG_MOD_OFF 24
#define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF)
#define CMD_HDR_FIRST_BURST_OFF 26
#define CMD_HDR_FIRST_BURST_MSK (0x1 << CMD_HDR_SG_MOD_OFF)
/* dw3 */
#define CMD_HDR_IPTT_OFF 0
#define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF)
/* dw6 */
#define CMD_HDR_DIF_SGL_LEN_OFF 0
#define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF)
#define CMD_HDR_DATA_SGL_LEN_OFF 16
#define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF)
#define CMD_HDR_ABORT_IPTT_OFF 16
#define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF)
/* Completion header */
/* dw0 */
#define CMPLT_HDR_ERR_PHASE_OFF 2
#define CMPLT_HDR_ERR_PHASE_MSK (0xff << CMPLT_HDR_ERR_PHASE_OFF)
#define CMPLT_HDR_RSPNS_XFRD_OFF 10
#define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF)
#define CMPLT_HDR_ERX_OFF 12
#define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF)
#define CMPLT_HDR_ABORT_STAT_OFF 13
#define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF)
/* abort_stat */
#define STAT_IO_NOT_VALID 0x1
#define STAT_IO_NO_DEVICE 0x2
#define STAT_IO_COMPLETE 0x3
#define STAT_IO_ABORTED 0x4
/* dw1 */
#define CMPLT_HDR_IPTT_OFF 0
#define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF)
#define CMPLT_HDR_DEV_ID_OFF 16
#define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF)
/* ITCT header */
/* qw0 */
#define ITCT_HDR_DEV_TYPE_OFF 0
#define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF)
#define ITCT_HDR_VALID_OFF 2
#define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF)
#define ITCT_HDR_MCR_OFF 5
#define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF)
#define ITCT_HDR_VLN_OFF 9
#define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF)
#define ITCT_HDR_SMP_TIMEOUT_OFF 16
#define ITCT_HDR_SMP_TIMEOUT_8US 1
#define ITCT_HDR_SMP_TIMEOUT (ITCT_HDR_SMP_TIMEOUT_8US * \
250) /* 2ms */
#define ITCT_HDR_AWT_CONTINUE_OFF 25
#define ITCT_HDR_PORT_ID_OFF 28
#define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF)
/* qw2 */
#define ITCT_HDR_INLT_OFF 0
#define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF)
#define ITCT_HDR_BITLT_OFF 16
#define ITCT_HDR_BITLT_MSK (0xffffULL << ITCT_HDR_BITLT_OFF)
#define ITCT_HDR_MCTLT_OFF 32
#define ITCT_HDR_MCTLT_MSK (0xffffULL << ITCT_HDR_MCTLT_OFF)
#define ITCT_HDR_RTOLT_OFF 48
#define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF)
#define HISI_SAS_FATAL_INT_NR 2
struct hisi_sas_complete_v2_hdr {
__le32 dw0;
__le32 dw1;
__le32 act;
__le32 dw3;
};
struct hisi_sas_err_record_v2 {
/* dw0 */
__le32 trans_tx_fail_type;
/* dw1 */
__le32 trans_rx_fail_type;
/* dw2 */
__le16 dma_tx_err_type;
__le16 sipc_rx_err_type;
/* dw3 */
__le32 dma_rx_err_type;
};
struct signal_attenuation_s {
u32 de_emphasis;
u32 preshoot;
u32 boost;
};
struct sig_atten_lu_s {
const struct signal_attenuation_s *att;
u32 sas_phy_ctrl;
};
static const struct hisi_sas_hw_error one_bit_ecc_errors[] = {
{
.irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_1B_OFF),
.msk = HGC_DQE_ECC_1B_ADDR_MSK,
.shift = HGC_DQE_ECC_1B_ADDR_OFF,
.msg = "hgc_dqe_acc1b_intr found: Ram address is 0x%08X\n",
.reg = HGC_DQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_1B_OFF),
.msk = HGC_IOST_ECC_1B_ADDR_MSK,
.shift = HGC_IOST_ECC_1B_ADDR_OFF,
.msg = "hgc_iost_acc1b_intr found: Ram address is 0x%08X\n",
.reg = HGC_IOST_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_1B_OFF),
.msk = HGC_ITCT_ECC_1B_ADDR_MSK,
.shift = HGC_ITCT_ECC_1B_ADDR_OFF,
.msg = "hgc_itct_acc1b_intr found: am address is 0x%08X\n",
.reg = HGC_ITCT_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF),
.msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF,
.msg = "hgc_iostl_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF),
.msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF,
.msg = "hgc_itctl_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_1B_OFF),
.msk = HGC_CQE_ECC_1B_ADDR_MSK,
.shift = HGC_CQE_ECC_1B_ADDR_OFF,
.msg = "hgc_cqe_acc1b_intr found: Ram address is 0x%08X\n",
.reg = HGC_CQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM0_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM0_OFF,
.msg = "rxm_mem0_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM1_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM1_OFF,
.msg = "rxm_mem1_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM2_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM2_OFF,
.msg = "rxm_mem2_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS15_MEM3_MSK,
.shift = HGC_RXM_DFX_STATUS15_MEM3_OFF,
.msg = "rxm_mem3_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS15,
},
};
static const struct hisi_sas_hw_error multi_bit_ecc_errors[] = {
{
.irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF),
.msk = HGC_DQE_ECC_MB_ADDR_MSK,
.shift = HGC_DQE_ECC_MB_ADDR_OFF,
.msg = "hgc_dqe_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_DQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF),
.msk = HGC_IOST_ECC_MB_ADDR_MSK,
.shift = HGC_IOST_ECC_MB_ADDR_OFF,
.msg = "hgc_iost_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_IOST_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF),
.msk = HGC_ITCT_ECC_MB_ADDR_MSK,
.shift = HGC_ITCT_ECC_MB_ADDR_OFF,
.msg = "hgc_itct_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_ITCT_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF,
.msg = "hgc_iostl_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF,
.msg = "hgc_itctl_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF),
.msk = HGC_CQE_ECC_MB_ADDR_MSK,
.shift = HGC_CQE_ECC_MB_ADDR_OFF,
.msg = "hgc_cqe_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_CQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM0_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM0_OFF,
.msg = "rxm_mem0_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM1_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM1_OFF,
.msg = "rxm_mem1_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM2_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM2_OFF,
.msg = "rxm_mem2_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS15_MEM3_MSK,
.shift = HGC_RXM_DFX_STATUS15_MEM3_OFF,
.msg = "rxm_mem3_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS15,
},
};
enum {
HISI_SAS_PHY_PHY_UPDOWN,
HISI_SAS_PHY_CHNL_INT,
HISI_SAS_PHY_INT_NR
};
enum {
TRANS_TX_FAIL_BASE = 0x0, /* dw0 */
TRANS_RX_FAIL_BASE = 0x20, /* dw1 */
DMA_TX_ERR_BASE = 0x40, /* dw2 bit 15-0 */
SIPC_RX_ERR_BASE = 0x50, /* dw2 bit 31-16*/
DMA_RX_ERR_BASE = 0x60, /* dw3 */
/* trans tx*/
TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS = TRANS_TX_FAIL_BASE, /* 0x0 */
TRANS_TX_ERR_PHY_NOT_ENABLE, /* 0x1 */
TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, /* 0x2 */
TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, /* 0x3 */
TRANS_TX_OPEN_CNX_ERR_BY_OTHER, /* 0x4 */
RESERVED0, /* 0x5 */
TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, /* 0x6 */
TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, /* 0x7 */
TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, /* 0x8 */
TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, /* 0x9 */
TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, /* 0xa */
TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, /* 0xb */
TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, /* 0xc */
TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, /* 0xd */
TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, /* 0xe */
TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, /* 0xf */
TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, /* 0x10 */
TRANS_TX_ERR_FRAME_TXED, /* 0x11 */
TRANS_TX_ERR_WITH_BREAK_TIMEOUT, /* 0x12 */
TRANS_TX_ERR_WITH_BREAK_REQUEST, /* 0x13 */
TRANS_TX_ERR_WITH_BREAK_RECEVIED, /* 0x14 */
TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, /* 0x15 */
TRANS_TX_ERR_WITH_CLOSE_NORMAL, /* 0x16 for ssp*/
TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, /* 0x17 */
TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x18 */
TRANS_TX_ERR_WITH_CLOSE_COMINIT, /* 0x19 */
TRANS_TX_ERR_WITH_NAK_RECEVIED, /* 0x1a for ssp*/
TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, /* 0x1b for ssp*/
/*IO_TX_ERR_WITH_R_ERR_RECEVIED, [> 0x1b for sata/stp<] */
TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, /* 0x1c for ssp */
/*IO_RX_ERR_WITH_SATA_DEVICE_LOST 0x1c for sata/stp */
TRANS_TX_ERR_WITH_IPTT_CONFLICT, /* 0x1d for ssp/smp */
TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, /* 0x1e */
/*IO_TX_ERR_WITH_SYNC_RXD, [> 0x1e <] for sata/stp */
TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, /* 0x1f for sata/stp */
/* trans rx */
TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR = TRANS_RX_FAIL_BASE, /* 0x20 */
TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, /* 0x21 for sata/stp */
TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, /* 0x22 for ssp/smp */
/*IO_ERR_WITH_RXFIS_8B10B_CODE_ERR, [> 0x22 <] for sata/stp */
TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, /* 0x23 for sata/stp */
TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, /* 0x24 for sata/stp */
TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, /* 0x25 for smp */
/*IO_ERR_WITH_RXFIS_TX SYNCP, [> 0x25 <] for sata/stp */
TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, /* 0x26 for sata/stp*/
TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, /* 0x27 */
TRANS_RX_ERR_WITH_BREAK_TIMEOUT, /* 0x28 */
TRANS_RX_ERR_WITH_BREAK_REQUEST, /* 0x29 */
TRANS_RX_ERR_WITH_BREAK_RECEVIED, /* 0x2a */
RESERVED1, /* 0x2b */
TRANS_RX_ERR_WITH_CLOSE_NORMAL, /* 0x2c */
TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, /* 0x2d */
TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x2e */
TRANS_RX_ERR_WITH_CLOSE_COMINIT, /* 0x2f */
TRANS_RX_ERR_WITH_DATA_LEN0, /* 0x30 for ssp/smp */
TRANS_RX_ERR_WITH_BAD_HASH, /* 0x31 for ssp */
/*IO_RX_ERR_WITH_FIS_TOO_SHORT, [> 0x31 <] for sata/stp */
TRANS_RX_XRDY_WLEN_ZERO_ERR, /* 0x32 for ssp*/
/*IO_RX_ERR_WITH_FIS_TOO_LONG, [> 0x32 <] for sata/stp */
TRANS_RX_SSP_FRM_LEN_ERR, /* 0x33 for ssp */
/*IO_RX_ERR_WITH_SATA_DEVICE_LOST, [> 0x33 <] for sata */
RESERVED2, /* 0x34 */
RESERVED3, /* 0x35 */
RESERVED4, /* 0x36 */
RESERVED5, /* 0x37 */
TRANS_RX_ERR_WITH_BAD_FRM_TYPE, /* 0x38 */
TRANS_RX_SMP_FRM_LEN_ERR, /* 0x39 */
TRANS_RX_SMP_RESP_TIMEOUT_ERR, /* 0x3a */
RESERVED6, /* 0x3b */
RESERVED7, /* 0x3c */
RESERVED8, /* 0x3d */
RESERVED9, /* 0x3e */
TRANS_RX_R_ERR, /* 0x3f */
/* dma tx */
DMA_TX_DIF_CRC_ERR = DMA_TX_ERR_BASE, /* 0x40 */
DMA_TX_DIF_APP_ERR, /* 0x41 */
DMA_TX_DIF_RPP_ERR, /* 0x42 */
DMA_TX_DATA_SGL_OVERFLOW, /* 0x43 */
DMA_TX_DIF_SGL_OVERFLOW, /* 0x44 */
DMA_TX_UNEXP_XFER_ERR, /* 0x45 */
DMA_TX_UNEXP_RETRANS_ERR, /* 0x46 */
DMA_TX_XFER_LEN_OVERFLOW, /* 0x47 */
DMA_TX_XFER_OFFSET_ERR, /* 0x48 */
DMA_TX_RAM_ECC_ERR, /* 0x49 */
DMA_TX_DIF_LEN_ALIGN_ERR, /* 0x4a */
DMA_TX_MAX_ERR_CODE,
/* sipc rx */
SIPC_RX_FIS_STATUS_ERR_BIT_VLD = SIPC_RX_ERR_BASE, /* 0x50 */
SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, /* 0x51 */
SIPC_RX_FIS_STATUS_BSY_BIT_ERR, /* 0x52 */
SIPC_RX_WRSETUP_LEN_ODD_ERR, /* 0x53 */
SIPC_RX_WRSETUP_LEN_ZERO_ERR, /* 0x54 */
SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, /* 0x55 */
SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, /* 0x56 */
SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, /* 0x57 */
SIPC_RX_SATA_UNEXP_FIS_ERR, /* 0x58 */
SIPC_RX_WRSETUP_ESTATUS_ERR, /* 0x59 */
SIPC_RX_DATA_UNDERFLOW_ERR, /* 0x5a */
SIPC_RX_MAX_ERR_CODE,
/* dma rx */
DMA_RX_DIF_CRC_ERR = DMA_RX_ERR_BASE, /* 0x60 */
DMA_RX_DIF_APP_ERR, /* 0x61 */
DMA_RX_DIF_RPP_ERR, /* 0x62 */
DMA_RX_DATA_SGL_OVERFLOW, /* 0x63 */
DMA_RX_DIF_SGL_OVERFLOW, /* 0x64 */
DMA_RX_DATA_LEN_OVERFLOW, /* 0x65 */
DMA_RX_DATA_LEN_UNDERFLOW, /* 0x66 */
DMA_RX_DATA_OFFSET_ERR, /* 0x67 */
RESERVED10, /* 0x68 */
DMA_RX_SATA_FRAME_TYPE_ERR, /* 0x69 */
DMA_RX_RESP_BUF_OVERFLOW, /* 0x6a */
DMA_RX_UNEXP_RETRANS_RESP_ERR, /* 0x6b */
DMA_RX_UNEXP_NORM_RESP_ERR, /* 0x6c */
DMA_RX_UNEXP_RDFRAME_ERR, /* 0x6d */
DMA_RX_PIO_DATA_LEN_ERR, /* 0x6e */
DMA_RX_RDSETUP_STATUS_ERR, /* 0x6f */
DMA_RX_RDSETUP_STATUS_DRQ_ERR, /* 0x70 */
DMA_RX_RDSETUP_STATUS_BSY_ERR, /* 0x71 */
DMA_RX_RDSETUP_LEN_ODD_ERR, /* 0x72 */
DMA_RX_RDSETUP_LEN_ZERO_ERR, /* 0x73 */
DMA_RX_RDSETUP_LEN_OVER_ERR, /* 0x74 */
DMA_RX_RDSETUP_OFFSET_ERR, /* 0x75 */
DMA_RX_RDSETUP_ACTIVE_ERR, /* 0x76 */
DMA_RX_RDSETUP_ESTATUS_ERR, /* 0x77 */
DMA_RX_RAM_ECC_ERR, /* 0x78 */
DMA_RX_UNKNOWN_FRM_ERR, /* 0x79 */
DMA_RX_MAX_ERR_CODE,
};
#define HISI_SAS_COMMAND_ENTRIES_V2_HW 4096
#define HISI_MAX_SATA_SUPPORT_V2_HW (HISI_SAS_COMMAND_ENTRIES_V2_HW/64 - 1)
#define DIR_NO_DATA 0
#define DIR_TO_INI 1
#define DIR_TO_DEVICE 2
#define DIR_RESERVED 3
#define ERR_ON_TX_PHASE(err_phase) (err_phase == 0x2 || \
err_phase == 0x4 || err_phase == 0x8 ||\
err_phase == 0x6 || err_phase == 0xa)
#define ERR_ON_RX_PHASE(err_phase) (err_phase == 0x10 || \
err_phase == 0x20 || err_phase == 0x40)
static void link_timeout_disable_link(struct timer_list *t);
static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl(regs);
}
static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl_relaxed(regs);
}
static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + off;
writel(val, regs);
}
static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no,
u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
writel(val, regs);
}
static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba,
int phy_no, u32 off)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
return readl(regs);
}
/* This function needs to be protected from pre-emption. */
static int
slot_index_alloc_quirk_v2_hw(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
int sata_dev = dev_is_sata(device);
void *bitmap = hisi_hba->slot_index_tags;
struct hisi_sas_device *sas_dev = device->lldd_dev;
int sata_idx = sas_dev->sata_idx;
int start, end;
unsigned long flags;
if (!sata_dev) {
/*
* STP link SoC bug workaround: index starts from 1.
* additionally, we can only allocate odd IPTT(1~4095)
* for SAS/SMP device.
*/
start = 1;
end = hisi_hba->slot_index_count;
} else {
if (sata_idx >= HISI_MAX_SATA_SUPPORT_V2_HW)
return -EINVAL;
/*
* For SATA device: allocate even IPTT in this interval
* [64*(sata_idx+1), 64*(sata_idx+2)], then each SATA device
* own 32 IPTTs. IPTT 0 shall not be used duing to STP link
* SoC bug workaround. So we ignore the first 32 even IPTTs.
*/
start = 64 * (sata_idx + 1);
end = 64 * (sata_idx + 2);
}
spin_lock_irqsave(&hisi_hba->lock, flags);
while (1) {
start = find_next_zero_bit(bitmap,
hisi_hba->slot_index_count, start);
if (start >= end) {
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return -SAS_QUEUE_FULL;
}
/*
* SAS IPTT bit0 should be 1, and SATA IPTT bit0 should be 0.
*/
if (sata_dev ^ (start & 1))
break;
start++;
}
set_bit(start, bitmap);
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return start;
}
static bool sata_index_alloc_v2_hw(struct hisi_hba *hisi_hba, int *idx)
{
unsigned int index;
struct device *dev = hisi_hba->dev;
void *bitmap = hisi_hba->sata_dev_bitmap;
index = find_first_zero_bit(bitmap, HISI_MAX_SATA_SUPPORT_V2_HW);
if (index >= HISI_MAX_SATA_SUPPORT_V2_HW) {
dev_warn(dev, "alloc sata index failed, index=%d\n", index);
return false;
}
set_bit(index, bitmap);
*idx = index;
return true;
}
static struct
hisi_sas_device *alloc_dev_quirk_v2_hw(struct domain_device *device)
{
struct hisi_hba *hisi_hba = device->port->ha->lldd_ha;
struct hisi_sas_device *sas_dev = NULL;
int i, sata_dev = dev_is_sata(device);
int sata_idx = -1;
unsigned long flags;
spin_lock_irqsave(&hisi_hba->lock, flags);
if (sata_dev)
if (!sata_index_alloc_v2_hw(hisi_hba, &sata_idx))
goto out;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
/*
* SATA device id bit0 should be 0
*/
if (sata_dev && (i & 1))
continue;
if (hisi_hba->devices[i].dev_type == SAS_PHY_UNUSED) {
int queue = i % hisi_hba->queue_count;
struct hisi_sas_dq *dq = &hisi_hba->dq[queue];
hisi_hba->devices[i].device_id = i;
sas_dev = &hisi_hba->devices[i];
sas_dev->dev_status = HISI_SAS_DEV_INIT;
sas_dev->dev_type = device->dev_type;
sas_dev->hisi_hba = hisi_hba;
sas_dev->sas_device = device;
sas_dev->sata_idx = sata_idx;
sas_dev->dq = dq;
spin_lock_init(&sas_dev->lock);
INIT_LIST_HEAD(&hisi_hba->devices[i].list);
break;
}
}
out:
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return sas_dev;
}
static void config_phy_opt_mode_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_DC_OPT_MSK;
cfg |= 1 << PHY_CFG_DC_OPT_OFF;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void config_id_frame_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct sas_identify_frame identify_frame;
u32 *identify_buffer;
memset(&identify_frame, 0, sizeof(identify_frame));
identify_frame.dev_type = SAS_END_DEVICE;
identify_frame.frame_type = 0;
identify_frame._un1 = 1;
identify_frame.initiator_bits = SAS_PROTOCOL_ALL;
identify_frame.target_bits = SAS_PROTOCOL_NONE;
memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
identify_frame.phy_id = phy_no;
identify_buffer = (u32 *)(&identify_frame);
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0,
__swab32(identify_buffer[0]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1,
__swab32(identify_buffer[1]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2,
__swab32(identify_buffer[2]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3,
__swab32(identify_buffer[3]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4,
__swab32(identify_buffer[4]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5,
__swab32(identify_buffer[5]));
}
static void setup_itct_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
struct domain_device *device = sas_dev->sas_device;
struct device *dev = hisi_hba->dev;
u64 qw0, device_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[device_id];
struct domain_device *parent_dev = device->parent;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u64 sas_addr;
memset(itct, 0, sizeof(*itct));
/* qw0 */
qw0 = 0;
switch (sas_dev->dev_type) {
case SAS_END_DEVICE:
case SAS_EDGE_EXPANDER_DEVICE:
case SAS_FANOUT_EXPANDER_DEVICE:
qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF;
break;
case SAS_SATA_DEV:
case SAS_SATA_PENDING:
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF;
else
qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF;
break;
default:
dev_warn(dev, "setup itct: unsupported dev type (%d)\n",
sas_dev->dev_type);
}
qw0 |= ((1 << ITCT_HDR_VALID_OFF) |
(device->linkrate << ITCT_HDR_MCR_OFF) |
(1 << ITCT_HDR_VLN_OFF) |
(ITCT_HDR_SMP_TIMEOUT << ITCT_HDR_SMP_TIMEOUT_OFF) |
(1 << ITCT_HDR_AWT_CONTINUE_OFF) |
(port->id << ITCT_HDR_PORT_ID_OFF));
itct->qw0 = cpu_to_le64(qw0);
/* qw1 */
memcpy(&sas_addr, device->sas_addr, SAS_ADDR_SIZE);
itct->sas_addr = cpu_to_le64(__swab64(sas_addr));
/* qw2 */
if (!dev_is_sata(device))
itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) |
(0x1ULL << ITCT_HDR_BITLT_OFF) |
(0x32ULL << ITCT_HDR_MCTLT_OFF) |
(0x1ULL << ITCT_HDR_RTOLT_OFF));
}
static void clear_itct_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
DECLARE_COMPLETION_ONSTACK(completion);
u64 dev_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id];
u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
int i;
sas_dev->completion = &completion;
/* clear the itct interrupt state */
if (ENT_INT_SRC3_ITC_INT_MSK & reg_val)
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
ENT_INT_SRC3_ITC_INT_MSK);
for (i = 0; i < 2; i++) {
reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK);
hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val);
wait_for_completion(sas_dev->completion);
memset(itct, 0, sizeof(struct hisi_sas_itct));
}
}
static void free_device_v2_hw(struct hisi_sas_device *sas_dev)
{
struct hisi_hba *hisi_hba = sas_dev->hisi_hba;
/* SoC bug workaround */
if (dev_is_sata(sas_dev->sas_device))
clear_bit(sas_dev->sata_idx, hisi_hba->sata_dev_bitmap);
}
static int reset_hw_v2_hw(struct hisi_hba *hisi_hba)
{
int i, reset_val;
u32 val;
unsigned long end_time;
struct device *dev = hisi_hba->dev;
/* The mask needs to be set depending on the number of phys */
if (hisi_hba->n_phy == 9)
reset_val = 0x1fffff;
else
reset_val = 0x7ffff;
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
/* Disable all of the PHYs */
for (i = 0; i < hisi_hba->n_phy; i++) {
u32 phy_cfg = hisi_sas_phy_read32(hisi_hba, i, PHY_CFG);
phy_cfg &= ~PHY_CTRL_RESET_MSK;
hisi_sas_phy_write32(hisi_hba, i, PHY_CFG, phy_cfg);
}
udelay(50);
/* Ensure DMA tx & rx idle */
for (i = 0; i < hisi_hba->n_phy; i++) {
u32 dma_tx_status, dma_rx_status;
end_time = jiffies + msecs_to_jiffies(1000);
while (1) {
dma_tx_status = hisi_sas_phy_read32(hisi_hba, i,
DMA_TX_STATUS);
dma_rx_status = hisi_sas_phy_read32(hisi_hba, i,
DMA_RX_STATUS);
if (!(dma_tx_status & DMA_TX_STATUS_BUSY_MSK) &&
!(dma_rx_status & DMA_RX_STATUS_BUSY_MSK))
break;
msleep(20);
if (time_after(jiffies, end_time))
return -EIO;
}
}
/* Ensure axi bus idle */
end_time = jiffies + msecs_to_jiffies(1000);
while (1) {
u32 axi_status =
hisi_sas_read32(hisi_hba, AXI_CFG);
if (axi_status == 0)
break;
msleep(20);
if (time_after(jiffies, end_time))
return -EIO;
}
if (ACPI_HANDLE(dev)) {
acpi_status s;
s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL);
if (ACPI_FAILURE(s)) {
dev_err(dev, "Reset failed\n");
return -EIO;
}
} else if (hisi_hba->ctrl) {
/* reset and disable clock*/
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg,
reset_val);
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg + 4,
reset_val);
msleep(1);
regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val);
if (reset_val != (val & reset_val)) {
dev_err(dev, "SAS reset fail.\n");
return -EIO;
}
/* De-reset and enable clock*/
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg + 4,
reset_val);
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg,
reset_val);
msleep(1);
regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg,
&val);
if (val & reset_val) {
dev_err(dev, "SAS de-reset fail.\n");
return -EIO;
}
} else {
dev_err(dev, "no reset method\n");
return -EINVAL;
}
return 0;
}
/* This function needs to be called after resetting SAS controller. */
static void phys_reject_stp_links_v2_hw(struct hisi_hba *hisi_hba)
{
u32 cfg;
int phy_no;
hisi_hba->reject_stp_links_msk = (1 << hisi_hba->n_phy) - 1;
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
cfg = hisi_sas_phy_read32(hisi_hba, phy_no, CON_CONTROL);
if (!(cfg & CON_CONTROL_CFG_OPEN_ACC_STP_MSK))
continue;
cfg &= ~CON_CONTROL_CFG_OPEN_ACC_STP_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, CON_CONTROL, cfg);
}
}
static void phys_try_accept_stp_links_v2_hw(struct hisi_hba *hisi_hba)
{
int phy_no;
u32 dma_tx_dfx1;
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
if (!(hisi_hba->reject_stp_links_msk & BIT(phy_no)))
continue;
dma_tx_dfx1 = hisi_sas_phy_read32(hisi_hba, phy_no,
DMA_TX_DFX1);
if (dma_tx_dfx1 & DMA_TX_DFX1_IPTT_MSK) {
u32 cfg = hisi_sas_phy_read32(hisi_hba,
phy_no, CON_CONTROL);
cfg |= CON_CONTROL_CFG_OPEN_ACC_STP_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no,
CON_CONTROL, cfg);
clear_bit(phy_no, &hisi_hba->reject_stp_links_msk);
}
}
}
static const struct signal_attenuation_s x6000 = {9200, 0, 10476};
static const struct sig_atten_lu_s sig_atten_lu[] = {
{ &x6000, 0x3016a68 },
};
static void init_reg_v2_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
u32 sas_phy_ctrl = 0x30b9908;
u32 signal[3];
int i;
/* Global registers init */
/* Deal with am-max-transmissions quirk */
if (device_property_present(dev, "hip06-sas-v2-quirk-amt")) {
hisi_sas_write32(hisi_hba, AM_CFG_MAX_TRANS, 0x2020);
hisi_sas_write32(hisi_hba, AM_CFG_SINGLE_PORT_MAX_TRANS,
0x2020);
} /* Else, use defaults -> do nothing */
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
hisi_sas_write32(hisi_hba, AXI_USER1, 0xc0000000);
hisi_sas_write32(hisi_hba, AXI_USER2, 0x10000);
hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x0);
hisi_sas_write32(hisi_hba, HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL, 0x7FF);
hisi_sas_write32(hisi_hba, OPENA_WT_CONTI_TIME, 0x1);
hisi_sas_write32(hisi_hba, I_T_NEXUS_LOSS_TIME, 0x1F4);
hisi_sas_write32(hisi_hba, MAX_CON_TIME_LIMIT_TIME, 0x32);
hisi_sas_write32(hisi_hba, BUS_INACTIVE_LIMIT_TIME, 0x1);
hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1);
hisi_sas_write32(hisi_hba, HGC_ERR_STAT_EN, 0x1);
hisi_sas_write32(hisi_hba, HGC_GET_ITV_TIME, 0x1);
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0xc);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x60);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x3);
hisi_sas_write32(hisi_hba, ENT_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, ENT_INT_COAL_CNT, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0x0);
hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0x7efefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0x7efefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0x7ffe20fe);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xfff00c30);
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0);
hisi_sas_write32(hisi_hba, AXI_AHB_CLK_CFG, 1);
hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1);
/* Get sas_phy_ctrl value to deal with TX FFE issue. */
if (!device_property_read_u32_array(dev, "hisilicon,signal-attenuation",
signal, ARRAY_SIZE(signal))) {
for (i = 0; i < ARRAY_SIZE(sig_atten_lu); i++) {
const struct sig_atten_lu_s *lookup = &sig_atten_lu[i];
const struct signal_attenuation_s *att = lookup->att;
if ((signal[0] == att->de_emphasis) &&
(signal[1] == att->preshoot) &&
(signal[2] == att->boost)) {
sas_phy_ctrl = lookup->sas_phy_ctrl;
break;
}
}
if (i == ARRAY_SIZE(sig_atten_lu))
dev_warn(dev, "unknown signal attenuation values, using default PHY ctrl config\n");
}
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
u32 prog_phy_link_rate = 0x800;
if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate <
SAS_LINK_RATE_1_5_GBPS)) {
prog_phy_link_rate = 0x855;
} else {
enum sas_linkrate max = sas_phy->phy->maximum_linkrate;
prog_phy_link_rate =
hisi_sas_get_prog_phy_linkrate_mask(max) |
0x800;
}
hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
hisi_sas_phy_write32(hisi_hba, i, SAS_PHY_CTRL, sas_phy_ctrl);
hisi_sas_phy_write32(hisi_hba, i, SL_TOUT_CFG, 0x7d7d7d7d);
hisi_sas_phy_write32(hisi_hba, i, SL_CONTROL, 0x0);
hisi_sas_phy_write32(hisi_hba, i, TXID_AUTO, 0x2);
hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0x8);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xfff87fff);
hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xff857fff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8ffffbfe);
hisi_sas_phy_write32(hisi_hba, i, SL_CFG, 0x13f801fc);
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT_COAL_EN, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x0);
if (hisi_hba->refclk_frequency_mhz == 66)
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, 0x199B694);
/* else, do nothing -> leave it how you found it */
}
for (i = 0; i < hisi_hba->queue_count; i++) {
/* Delivery queue */
hisi_sas_write32(hisi_hba,
DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
/* Completion queue */
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
}
/* itct */
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO,
lower_32_bits(hisi_hba->itct_dma));
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI,
upper_32_bits(hisi_hba->itct_dma));
/* iost */
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO,
lower_32_bits(hisi_hba->iost_dma));
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI,
upper_32_bits(hisi_hba->iost_dma));
/* breakpoint */
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->breakpoint_dma));
/* SATA broken msg */
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->sata_breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->sata_breakpoint_dma));
/* SATA initial fis */
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO,
lower_32_bits(hisi_hba->initial_fis_dma));
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI,
upper_32_bits(hisi_hba->initial_fis_dma));
}
static void link_timeout_enable_link(struct timer_list *t)
{
struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer);
int i, reg_val;
for (i = 0; i < hisi_hba->n_phy; i++) {
if (hisi_hba->reject_stp_links_msk & BIT(i))
continue;
reg_val = hisi_sas_phy_read32(hisi_hba, i, CON_CONTROL);
if (!(reg_val & BIT(0))) {
hisi_sas_phy_write32(hisi_hba, i,
CON_CONTROL, 0x7);
break;
}
}
hisi_hba->timer.function = link_timeout_disable_link;
mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(900));
}
static void link_timeout_disable_link(struct timer_list *t)
{
struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer);
int i, reg_val;
reg_val = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < hisi_hba->n_phy && reg_val; i++) {
if (hisi_hba->reject_stp_links_msk & BIT(i))
continue;
if (reg_val & BIT(i)) {
hisi_sas_phy_write32(hisi_hba, i,
CON_CONTROL, 0x6);
break;
}
}
hisi_hba->timer.function = link_timeout_enable_link;
mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(100));
}
static void set_link_timer_quirk(struct hisi_hba *hisi_hba)
{
hisi_hba->timer.function = link_timeout_disable_link;
hisi_hba->timer.expires = jiffies + msecs_to_jiffies(1000);
add_timer(&hisi_hba->timer);
}
static int hw_init_v2_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc;
rc = reset_hw_v2_hw(hisi_hba);
if (rc) {
dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc);
return rc;
}
msleep(100);
init_reg_v2_hw(hisi_hba);
return 0;
}
static void enable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg |= PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static bool is_sata_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 context;
context = hisi_sas_read32(hisi_hba, PHY_CONTEXT);
if (context & (1 << phy_no))
return true;
return false;
}
static bool tx_fifo_is_empty_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 dfx_val;
dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1);
if (dfx_val & BIT(16))
return false;
return true;
}
static bool axi_bus_is_idle_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
int i, max_loop = 1000;
struct device *dev = hisi_hba->dev;
u32 status, axi_status, dfx_val, dfx_tx_val;
for (i = 0; i < max_loop; i++) {
status = hisi_sas_read32_relaxed(hisi_hba,
AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN);
axi_status = hisi_sas_read32(hisi_hba, AXI_CFG);
dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1);
dfx_tx_val = hisi_sas_phy_read32(hisi_hba,
phy_no, DMA_TX_FIFO_DFX0);
if ((status == 0x3) && (axi_status == 0x0) &&
(dfx_val & BIT(20)) && (dfx_tx_val & BIT(10)))
return true;
udelay(10);
}
dev_err(dev, "bus is not idle phy%d, axi150:0x%x axi100:0x%x port204:0x%x port240:0x%x\n",
phy_no, status, axi_status,
dfx_val, dfx_tx_val);
return false;
}
static bool wait_io_done_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
int i, max_loop = 1000;
struct device *dev = hisi_hba->dev;
u32 status, tx_dfx0;
for (i = 0; i < max_loop; i++) {
status = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2);
status = (status & 0x3fc0) >> 6;
if (status != 0x1)
return true;
tx_dfx0 = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX0);
if ((tx_dfx0 & 0x1ff) == 0x2)
return true;
udelay(10);
}
dev_err(dev, "IO not done phy%d, port264:0x%x port200:0x%x\n",
phy_no, status, tx_dfx0);
return false;
}
static bool allowed_disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
if (tx_fifo_is_empty_v2_hw(hisi_hba, phy_no))
return true;
if (!axi_bus_is_idle_v2_hw(hisi_hba, phy_no))
return false;
if (!wait_io_done_v2_hw(hisi_hba, phy_no))
return false;
return true;
}
static void disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg, axi_val, dfx0_val, txid_auto;
struct device *dev = hisi_hba->dev;
/* Close axi bus. */
axi_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL);
axi_val |= 0x1;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, axi_val);
if (is_sata_phy_v2_hw(hisi_hba, phy_no)) {
if (allowed_disable_phy_v2_hw(hisi_hba, phy_no))
goto do_disable;
/* Reset host controller. */
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
return;
}
dfx0_val = hisi_sas_phy_read32(hisi_hba, phy_no, PORT_DFX0);
dfx0_val = (dfx0_val & 0x1fc0) >> 6;
if (dfx0_val != 0x4)
goto do_disable;
if (!tx_fifo_is_empty_v2_hw(hisi_hba, phy_no)) {
dev_warn(dev, "phy%d, wait tx fifo need send break\n",
phy_no);
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no,
TXID_AUTO);
txid_auto |= TXID_AUTO_CTB_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto);
}
do_disable:
cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
/* Open axi bus. */
axi_val &= ~0x1;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, axi_val);
}
static void start_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
config_id_frame_v2_hw(hisi_hba, phy_no);
config_phy_opt_mode_v2_hw(hisi_hba, phy_no);
enable_phy_v2_hw(hisi_hba, phy_no);
}
static void phy_hard_reset_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 txid_auto;
disable_phy_v2_hw(hisi_hba, phy_no);
if (phy->identify.device_type == SAS_END_DEVICE) {
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TX_HARDRST_MSK);
}
msleep(100);
start_phy_v2_hw(hisi_hba, phy_no);
}
static void phy_get_events_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
u32 err4_reg_val, err6_reg_val;
/* loss dword syn, phy reset problem */
err4_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT4_REG);
/* disparity err, invalid dword */
err6_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT6_REG);
sphy->loss_of_dword_sync_count += (err4_reg_val >> 16) & 0xFFFF;
sphy->phy_reset_problem_count += err4_reg_val & 0xFFFF;
sphy->invalid_dword_count += (err6_reg_val & 0xFF0000) >> 16;
sphy->running_disparity_error_count += err6_reg_val & 0xFF;
}
static void phys_init_v2_hw(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
if (!sas_phy->phy->enabled)
continue;
start_phy_v2_hw(hisi_hba, i);
}
}
static void sl_notify_ssp_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 sl_control;
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control |= SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
msleep(1);
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
}
static enum sas_linkrate phy_get_max_linkrate_v2_hw(void)
{
return SAS_LINK_RATE_12_0_GBPS;
}
static void phy_set_linkrate_v2_hw(struct hisi_hba *hisi_hba, int phy_no,
struct sas_phy_linkrates *r)
{
enum sas_linkrate max = r->maximum_linkrate;
u32 prog_phy_link_rate = 0x800;
prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max);
hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
}
static int get_wideport_bitmap_v2_hw(struct hisi_hba *hisi_hba, int port_id)
{
int i, bitmap = 0;
u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < (hisi_hba->n_phy < 9 ? hisi_hba->n_phy : 8); i++)
if (phy_state & 1 << i)
if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id)
bitmap |= 1 << i;
if (hisi_hba->n_phy == 9) {
u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
if (phy_state & 1 << 8)
if (((port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >>
PORT_STATE_PHY8_PORT_NUM_OFF) == port_id)
bitmap |= 1 << 9;
}
return bitmap;
}
/*
* The callpath to this function and upto writing the write
* queue pointer should be safe from interruption.
*/
static int
get_free_slot_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_dq *dq)
{
struct device *dev = hisi_hba->dev;
int queue = dq->id;
u32 r, w;
w = dq->wr_point;
r = hisi_sas_read32_relaxed(hisi_hba,
DLVRY_Q_0_RD_PTR + (queue * 0x14));
if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) {
dev_warn(dev, "full queue=%d r=%d w=%d\n",
queue, r, w);
return -EAGAIN;
}
dq->wr_point = (dq->wr_point + 1) % HISI_SAS_QUEUE_SLOTS;
return w;
}
/* DQ lock must be taken here */
static void start_delivery_v2_hw(struct hisi_sas_dq *dq)
{
struct hisi_hba *hisi_hba = dq->hisi_hba;
struct hisi_sas_slot *s, *s1, *s2 = NULL;
int dlvry_queue = dq->id;
int wp;
list_for_each_entry_safe(s, s1, &dq->list, delivery) {
if (!s->ready)
break;
s2 = s;
list_del(&s->delivery);
}
if (!s2)
return;
/*
* Ensure that memories for slots built on other CPUs is observed.
*/
smp_rmb();
wp = (s2->dlvry_queue_slot + 1) % HISI_SAS_QUEUE_SLOTS;
hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), wp);
}
static void prep_prd_sge_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot);
struct scatterlist *sg;
int i;
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot));
hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF);
}
static void prep_smp_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_port *port = slot->port;
struct scatterlist *sg_req;
struct hisi_sas_device *sas_dev = device->lldd_dev;
dma_addr_t req_dma_addr;
unsigned int req_len;
/* req */
sg_req = &task->smp_task.smp_req;
req_dma_addr = sg_dma_address(sg_req);
req_len = sg_dma_len(&task->smp_task.smp_req);
/* create header */
/* dw0 */
hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) |
(1 << CMD_HDR_PRIORITY_OFF) | /* high pri */
(2 << CMD_HDR_CMD_OFF)); /* smp */
/* map itct entry */
hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) |
(1 << CMD_HDR_FRAME_TYPE_OFF) |
(DIR_NO_DATA << CMD_HDR_DIR_OFF));
/* dw2 */
hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) |
(HISI_SAS_MAX_SMP_RESP_SZ / 4 <<
CMD_HDR_MRFL_OFF));
hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF);
hdr->cmd_table_addr = cpu_to_le64(req_dma_addr);
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
}
static void prep_ssp_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_port *port = slot->port;
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
struct hisi_sas_tmf_task *tmf = slot->tmf;
int has_data = 0, priority = !!tmf;
u8 *buf_cmd;
u32 dw1 = 0, dw2 = 0;
hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) |
(2 << CMD_HDR_TLR_CTRL_OFF) |
(port->id << CMD_HDR_PORT_OFF) |
(priority << CMD_HDR_PRIORITY_OFF) |
(1 << CMD_HDR_CMD_OFF)); /* ssp */
dw1 = 1 << CMD_HDR_VDTL_OFF;
if (tmf) {
dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF;
dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF;
} else {
dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF;
switch (scsi_cmnd->sc_data_direction) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
}
/* map itct entry */
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
hdr->dw1 = cpu_to_le32(dw1);
dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr)
+ 3) / 4) << CMD_HDR_CFL_OFF) |
((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) |
(2 << CMD_HDR_SG_MOD_OFF);
hdr->dw2 = cpu_to_le32(dw2);
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data)
prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
if (!tmf) {
buf_cmd[9] = task->ssp_task.task_attr |
(task->ssp_task.task_prio << 3);
memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd,
task->ssp_task.cmd->cmd_len);
} else {
buf_cmd[10] = tmf->tmf;
switch (tmf->tmf) {
case TMF_ABORT_TASK:
case TMF_QUERY_TASK:
buf_cmd[12] =
(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
buf_cmd[13] =
tmf->tag_of_task_to_be_managed & 0xff;
break;
default:
break;
}
}
}
#define TRANS_TX_ERR 0
#define TRANS_RX_ERR 1
#define DMA_TX_ERR 2
#define SIPC_RX_ERR 3
#define DMA_RX_ERR 4
#define DMA_TX_ERR_OFF 0
#define DMA_TX_ERR_MSK (0xffff << DMA_TX_ERR_OFF)
#define SIPC_RX_ERR_OFF 16
#define SIPC_RX_ERR_MSK (0xffff << SIPC_RX_ERR_OFF)
static int parse_trans_tx_err_code_v2_hw(u32 err_msk)
{
static const u8 trans_tx_err_code_prio[] = {
TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS,
TRANS_TX_ERR_PHY_NOT_ENABLE,
TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION,
TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION,
TRANS_TX_OPEN_CNX_ERR_BY_OTHER,
RESERVED0,
TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT,
TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY,
TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED,
TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED,
TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION,
TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD,
TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER,
TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED,
TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT,
TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION,
TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED,
TRANS_TX_ERR_WITH_CLOSE_PHYDISALE,
TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT,
TRANS_TX_ERR_WITH_CLOSE_COMINIT,
TRANS_TX_ERR_WITH_BREAK_TIMEOUT,
TRANS_TX_ERR_WITH_BREAK_REQUEST,
TRANS_TX_ERR_WITH_BREAK_RECEVIED,
TRANS_TX_ERR_WITH_CLOSE_TIMEOUT,
TRANS_TX_ERR_WITH_CLOSE_NORMAL,
TRANS_TX_ERR_WITH_NAK_RECEVIED,
TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT,
TRANS_TX_ERR_WITH_CREDIT_TIMEOUT,
TRANS_TX_ERR_WITH_IPTT_CONFLICT,
TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS,
TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(trans_tx_err_code_prio); i++) {
index = trans_tx_err_code_prio[i] - TRANS_TX_FAIL_BASE;
if (err_msk & (1 << index))
return trans_tx_err_code_prio[i];
}
return -1;
}
static int parse_trans_rx_err_code_v2_hw(u32 err_msk)
{
static const u8 trans_rx_err_code_prio[] = {
TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR,
TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR,
TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM,
TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR,
TRANS_RX_ERR_WITH_RXFIS_CRC_ERR,
TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN,
TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP,
TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN,
TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE,
TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT,
TRANS_RX_ERR_WITH_CLOSE_COMINIT,
TRANS_RX_ERR_WITH_BREAK_TIMEOUT,
TRANS_RX_ERR_WITH_BREAK_REQUEST,
TRANS_RX_ERR_WITH_BREAK_RECEVIED,
RESERVED1,
TRANS_RX_ERR_WITH_CLOSE_NORMAL,
TRANS_RX_ERR_WITH_DATA_LEN0,
TRANS_RX_ERR_WITH_BAD_HASH,
TRANS_RX_XRDY_WLEN_ZERO_ERR,
TRANS_RX_SSP_FRM_LEN_ERR,
RESERVED2,
RESERVED3,
RESERVED4,
RESERVED5,
TRANS_RX_ERR_WITH_BAD_FRM_TYPE,
TRANS_RX_SMP_FRM_LEN_ERR,
TRANS_RX_SMP_RESP_TIMEOUT_ERR,
RESERVED6,
RESERVED7,
RESERVED8,
RESERVED9,
TRANS_RX_R_ERR,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(trans_rx_err_code_prio); i++) {
index = trans_rx_err_code_prio[i] - TRANS_RX_FAIL_BASE;
if (err_msk & (1 << index))
return trans_rx_err_code_prio[i];
}
return -1;
}
static int parse_dma_tx_err_code_v2_hw(u32 err_msk)
{
static const u8 dma_tx_err_code_prio[] = {
DMA_TX_UNEXP_XFER_ERR,
DMA_TX_UNEXP_RETRANS_ERR,
DMA_TX_XFER_LEN_OVERFLOW,
DMA_TX_XFER_OFFSET_ERR,
DMA_TX_RAM_ECC_ERR,
DMA_TX_DIF_LEN_ALIGN_ERR,
DMA_TX_DIF_CRC_ERR,
DMA_TX_DIF_APP_ERR,
DMA_TX_DIF_RPP_ERR,
DMA_TX_DATA_SGL_OVERFLOW,
DMA_TX_DIF_SGL_OVERFLOW,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(dma_tx_err_code_prio); i++) {
index = dma_tx_err_code_prio[i] - DMA_TX_ERR_BASE;
err_msk = err_msk & DMA_TX_ERR_MSK;
if (err_msk & (1 << index))
return dma_tx_err_code_prio[i];
}
return -1;
}
static int parse_sipc_rx_err_code_v2_hw(u32 err_msk)
{
static const u8 sipc_rx_err_code_prio[] = {
SIPC_RX_FIS_STATUS_ERR_BIT_VLD,
SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR,
SIPC_RX_FIS_STATUS_BSY_BIT_ERR,
SIPC_RX_WRSETUP_LEN_ODD_ERR,
SIPC_RX_WRSETUP_LEN_ZERO_ERR,
SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR,
SIPC_RX_NCQ_WRSETUP_OFFSET_ERR,
SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR,
SIPC_RX_SATA_UNEXP_FIS_ERR,
SIPC_RX_WRSETUP_ESTATUS_ERR,
SIPC_RX_DATA_UNDERFLOW_ERR,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(sipc_rx_err_code_prio); i++) {
index = sipc_rx_err_code_prio[i] - SIPC_RX_ERR_BASE;
err_msk = err_msk & SIPC_RX_ERR_MSK;
if (err_msk & (1 << (index + 0x10)))
return sipc_rx_err_code_prio[i];
}
return -1;
}
static int parse_dma_rx_err_code_v2_hw(u32 err_msk)
{
static const u8 dma_rx_err_code_prio[] = {
DMA_RX_UNKNOWN_FRM_ERR,
DMA_RX_DATA_LEN_OVERFLOW,
DMA_RX_DATA_LEN_UNDERFLOW,
DMA_RX_DATA_OFFSET_ERR,
RESERVED10,
DMA_RX_SATA_FRAME_TYPE_ERR,
DMA_RX_RESP_BUF_OVERFLOW,
DMA_RX_UNEXP_RETRANS_RESP_ERR,
DMA_RX_UNEXP_NORM_RESP_ERR,
DMA_RX_UNEXP_RDFRAME_ERR,
DMA_RX_PIO_DATA_LEN_ERR,
DMA_RX_RDSETUP_STATUS_ERR,
DMA_RX_RDSETUP_STATUS_DRQ_ERR,
DMA_RX_RDSETUP_STATUS_BSY_ERR,
DMA_RX_RDSETUP_LEN_ODD_ERR,
DMA_RX_RDSETUP_LEN_ZERO_ERR,
DMA_RX_RDSETUP_LEN_OVER_ERR,
DMA_RX_RDSETUP_OFFSET_ERR,
DMA_RX_RDSETUP_ACTIVE_ERR,
DMA_RX_RDSETUP_ESTATUS_ERR,
DMA_RX_RAM_ECC_ERR,
DMA_RX_DIF_CRC_ERR,
DMA_RX_DIF_APP_ERR,
DMA_RX_DIF_RPP_ERR,
DMA_RX_DATA_SGL_OVERFLOW,
DMA_RX_DIF_SGL_OVERFLOW,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(dma_rx_err_code_prio); i++) {
index = dma_rx_err_code_prio[i] - DMA_RX_ERR_BASE;
if (err_msk & (1 << index))
return dma_rx_err_code_prio[i];
}
return -1;
}
/* by default, task resp is complete */
static void slot_err_v2_hw(struct hisi_hba *hisi_hba,
struct sas_task *task,
struct hisi_sas_slot *slot,
int err_phase)
{
struct task_status_struct *ts = &task->task_status;
struct hisi_sas_err_record_v2 *err_record =
hisi_sas_status_buf_addr_mem(slot);
u32 trans_tx_fail_type = le32_to_cpu(err_record->trans_tx_fail_type);
u32 trans_rx_fail_type = le32_to_cpu(err_record->trans_rx_fail_type);
u16 dma_tx_err_type = le16_to_cpu(err_record->dma_tx_err_type);
u16 sipc_rx_err_type = le16_to_cpu(err_record->sipc_rx_err_type);
u32 dma_rx_err_type = le32_to_cpu(err_record->dma_rx_err_type);
int error = -1;
if (err_phase == 1) {
/* error in TX phase, the priority of error is: DW2 > DW0 */
error = parse_dma_tx_err_code_v2_hw(dma_tx_err_type);
if (error == -1)
error = parse_trans_tx_err_code_v2_hw(
trans_tx_fail_type);
} else if (err_phase == 2) {
/* error in RX phase, the priority is: DW1 > DW3 > DW2 */
error = parse_trans_rx_err_code_v2_hw(trans_rx_fail_type);
if (error == -1) {
error = parse_dma_rx_err_code_v2_hw(
dma_rx_err_type);
if (error == -1)
error = parse_sipc_rx_err_code_v2_hw(
sipc_rx_err_type);
}
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
{
switch (error) {
case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_NO_DEST;
break;
}
case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
}
case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
break;
}
case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
}
case DMA_RX_UNEXP_NORM_RESP_ERR:
case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION:
case DMA_RX_RESP_BUF_OVERFLOW:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
}
case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER:
{
/* not sure */
ts->stat = SAS_DEV_NO_RESPONSE;
break;
}
case DMA_RX_DATA_LEN_OVERFLOW:
{
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
break;
}
case DMA_RX_DATA_LEN_UNDERFLOW:
{
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
break;
}
case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS:
case TRANS_TX_ERR_PHY_NOT_ENABLE:
case TRANS_TX_OPEN_CNX_ERR_BY_OTHER:
case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT:
case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD:
case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED:
case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT:
case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED:
case TRANS_TX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_TX_ERR_WITH_BREAK_REQUEST:
case TRANS_TX_ERR_WITH_BREAK_RECEVIED:
case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_NORMAL:
case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE:
case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_COMINIT:
case TRANS_TX_ERR_WITH_NAK_RECEVIED:
case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT:
case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT:
case TRANS_TX_ERR_WITH_IPTT_CONFLICT:
case TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR:
case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR:
case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM:
case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN:
case TRANS_RX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_RX_ERR_WITH_BREAK_REQUEST:
case TRANS_RX_ERR_WITH_BREAK_RECEVIED:
case TRANS_RX_ERR_WITH_CLOSE_NORMAL:
case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_RX_ERR_WITH_CLOSE_COMINIT:
case TRANS_TX_ERR_FRAME_TXED:
case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE:
case TRANS_RX_ERR_WITH_DATA_LEN0:
case TRANS_RX_ERR_WITH_BAD_HASH:
case TRANS_RX_XRDY_WLEN_ZERO_ERR:
case TRANS_RX_SSP_FRM_LEN_ERR:
case TRANS_RX_ERR_WITH_BAD_FRM_TYPE:
case DMA_TX_DATA_SGL_OVERFLOW:
case DMA_TX_UNEXP_XFER_ERR:
case DMA_TX_UNEXP_RETRANS_ERR:
case DMA_TX_XFER_LEN_OVERFLOW:
case DMA_TX_XFER_OFFSET_ERR:
case SIPC_RX_DATA_UNDERFLOW_ERR:
case DMA_RX_DATA_SGL_OVERFLOW:
case DMA_RX_DATA_OFFSET_ERR:
case DMA_RX_RDSETUP_LEN_ODD_ERR:
case DMA_RX_RDSETUP_LEN_ZERO_ERR:
case DMA_RX_RDSETUP_LEN_OVER_ERR:
case DMA_RX_SATA_FRAME_TYPE_ERR:
case DMA_RX_UNKNOWN_FRM_ERR:
{
/* This will request a retry */
ts->stat = SAS_QUEUE_FULL;
slot->abort = 1;
break;
}
default:
break;
}
}
break;
case SAS_PROTOCOL_SMP:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
{
switch (error) {
case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_NO_DEST;
break;
}
case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER:
{
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
}
case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
}
case DMA_RX_RESP_BUF_OVERFLOW:
case DMA_RX_UNEXP_NORM_RESP_ERR:
case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
}
case DMA_RX_DATA_LEN_OVERFLOW:
{
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
break;
}
case DMA_RX_DATA_LEN_UNDERFLOW:
{
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
break;
}
case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS:
case TRANS_TX_ERR_PHY_NOT_ENABLE:
case TRANS_TX_OPEN_CNX_ERR_BY_OTHER:
case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT:
case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD:
case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED:
case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT:
case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED:
case TRANS_TX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_TX_ERR_WITH_BREAK_REQUEST:
case TRANS_TX_ERR_WITH_BREAK_RECEVIED:
case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_NORMAL:
case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE:
case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_COMINIT:
case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT:
case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT:
case TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS:
case TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT:
case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM:
case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR:
case TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR:
case TRANS_RX_ERR_WITH_RXFIS_CRC_ERR:
case TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN:
case TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP:
case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN:
case TRANS_RX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_RX_ERR_WITH_BREAK_REQUEST:
case TRANS_RX_ERR_WITH_BREAK_RECEVIED:
case TRANS_RX_ERR_WITH_CLOSE_NORMAL:
case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE:
case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_RX_ERR_WITH_CLOSE_COMINIT:
case TRANS_RX_ERR_WITH_DATA_LEN0:
case TRANS_RX_ERR_WITH_BAD_HASH:
case TRANS_RX_XRDY_WLEN_ZERO_ERR:
case TRANS_RX_ERR_WITH_BAD_FRM_TYPE:
case DMA_TX_DATA_SGL_OVERFLOW:
case DMA_TX_UNEXP_XFER_ERR:
case DMA_TX_UNEXP_RETRANS_ERR:
case DMA_TX_XFER_LEN_OVERFLOW:
case DMA_TX_XFER_OFFSET_ERR:
case SIPC_RX_FIS_STATUS_ERR_BIT_VLD:
case SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR:
case SIPC_RX_FIS_STATUS_BSY_BIT_ERR:
case SIPC_RX_WRSETUP_LEN_ODD_ERR:
case SIPC_RX_WRSETUP_LEN_ZERO_ERR:
case SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR:
case SIPC_RX_SATA_UNEXP_FIS_ERR:
case DMA_RX_DATA_SGL_OVERFLOW:
case DMA_RX_DATA_OFFSET_ERR:
case DMA_RX_SATA_FRAME_TYPE_ERR:
case DMA_RX_UNEXP_RDFRAME_ERR:
case DMA_RX_PIO_DATA_LEN_ERR:
case DMA_RX_RDSETUP_STATUS_ERR:
case DMA_RX_RDSETUP_STATUS_DRQ_ERR:
case DMA_RX_RDSETUP_STATUS_BSY_ERR:
case DMA_RX_RDSETUP_LEN_ODD_ERR:
case DMA_RX_RDSETUP_LEN_ZERO_ERR:
case DMA_RX_RDSETUP_LEN_OVER_ERR:
case DMA_RX_RDSETUP_OFFSET_ERR:
case DMA_RX_RDSETUP_ACTIVE_ERR:
case DMA_RX_RDSETUP_ESTATUS_ERR:
case DMA_RX_UNKNOWN_FRM_ERR:
case TRANS_RX_SSP_FRM_LEN_ERR:
case TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY:
{
slot->abort = 1;
ts->stat = SAS_PHY_DOWN;
break;
}
default:
{
ts->stat = SAS_PROTO_RESPONSE;
break;
}
}
hisi_sas_sata_done(task, slot);
}
break;
default:
break;
}
}
static int
slot_complete_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_device *sas_dev;
struct device *dev = hisi_hba->dev;
struct task_status_struct *ts;
struct domain_device *device;
struct sas_ha_struct *ha;
enum exec_status sts;
struct hisi_sas_complete_v2_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v2_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
unsigned long flags;
bool is_internal = slot->is_internal;
u32 dw0;
if (unlikely(!task || !task->lldd_task || !task->dev))
return -EINVAL;
ts = &task->task_status;
device = task->dev;
ha = device->port->ha;
sas_dev = device->lldd_dev;
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
spin_unlock_irqrestore(&task->task_state_lock, flags);
memset(ts, 0, sizeof(*ts));
ts->resp = SAS_TASK_COMPLETE;
if (unlikely(!sas_dev)) {
dev_dbg(dev, "slot complete: port has no device\n");
ts->stat = SAS_PHY_DOWN;
goto out;
}
/* Use SAS+TMF status codes */
dw0 = le32_to_cpu(complete_hdr->dw0);
switch ((dw0 & CMPLT_HDR_ABORT_STAT_MSK) >>
CMPLT_HDR_ABORT_STAT_OFF) {
case STAT_IO_ABORTED:
/* this io has been aborted by abort command */
ts->stat = SAS_ABORTED_TASK;
goto out;
case STAT_IO_COMPLETE:
/* internal abort command complete */
ts->stat = TMF_RESP_FUNC_SUCC;
del_timer(&slot->internal_abort_timer);
goto out;
case STAT_IO_NO_DEVICE:
ts->stat = TMF_RESP_FUNC_COMPLETE;
del_timer(&slot->internal_abort_timer);
goto out;
case STAT_IO_NOT_VALID:
/* abort single io, controller don't find
* the io need to abort
*/
ts->stat = TMF_RESP_FUNC_FAILED;
del_timer(&slot->internal_abort_timer);
goto out;
default:
break;
}
if ((dw0 & CMPLT_HDR_ERX_MSK) && (!(dw0 & CMPLT_HDR_RSPNS_XFRD_MSK))) {
u32 err_phase = (dw0 & CMPLT_HDR_ERR_PHASE_MSK)
>> CMPLT_HDR_ERR_PHASE_OFF;
u32 *error_info = hisi_sas_status_buf_addr_mem(slot);
/* Analyse error happens on which phase TX or RX */
if (ERR_ON_TX_PHASE(err_phase))
slot_err_v2_hw(hisi_hba, task, slot, 1);
else if (ERR_ON_RX_PHASE(err_phase))
slot_err_v2_hw(hisi_hba, task, slot, 2);
if (ts->stat != SAS_DATA_UNDERRUN)
dev_info(dev, "erroneous completion iptt=%d task=%p dev id=%d "
"CQ hdr: 0x%x 0x%x 0x%x 0x%x "
"Error info: 0x%x 0x%x 0x%x 0x%x\n",
slot->idx, task, sas_dev->device_id,
complete_hdr->dw0, complete_hdr->dw1,
complete_hdr->act, complete_hdr->dw3,
error_info[0], error_info[1],
error_info[2], error_info[3]);
if (unlikely(slot->abort))
return ts->stat;
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
{
struct hisi_sas_status_buffer *status_buffer =
hisi_sas_status_buf_addr_mem(slot);
struct ssp_response_iu *iu = (struct ssp_response_iu *)
&status_buffer->iu[0];
sas_ssp_task_response(dev, task, iu);
break;
}
case SAS_PROTOCOL_SMP:
{
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
void *to;
ts->stat = SAM_STAT_GOOD;
to = kmap_atomic(sg_page(sg_resp));
dma_unmap_sg(dev, &task->smp_task.smp_resp, 1,
DMA_FROM_DEVICE);
dma_unmap_sg(dev, &task->smp_task.smp_req, 1,
DMA_TO_DEVICE);
memcpy(to + sg_resp->offset,
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record),
sg_dma_len(sg_resp));
kunmap_atomic(to);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
{
ts->stat = SAM_STAT_GOOD;
hisi_sas_sata_done(task, slot);
break;
}
default:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
}
if (!slot->port->port_attached) {
dev_warn(dev, "slot complete: port %d has removed\n",
slot->port->sas_port.id);
ts->stat = SAS_PHY_DOWN;
}
out:
sts = ts->stat;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
spin_unlock_irqrestore(&task->task_state_lock, flags);
dev_info(dev, "slot complete: task(%p) aborted\n", task);
return SAS_ABORTED_TASK;
}
task->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&task->task_state_lock, flags);
hisi_sas_slot_task_free(hisi_hba, task, slot);
if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) {
spin_lock_irqsave(&device->done_lock, flags);
if (test_bit(SAS_HA_FROZEN, &ha->state)) {
spin_unlock_irqrestore(&device->done_lock, flags);
dev_info(dev, "slot complete: task(%p) ignored\n ",
task);
return sts;
}
spin_unlock_irqrestore(&device->done_lock, flags);
}
if (task->task_done)
task->task_done(task);
return sts;
}
static void prep_ata_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct domain_device *device = task->dev;
struct domain_device *parent_dev = device->parent;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
struct hisi_sas_tmf_task *tmf = slot->tmf;
u8 *buf_cmd;
int has_data = 0, hdr_tag = 0;
u32 dw0, dw1 = 0, dw2 = 0;
/* create header */
/* dw0 */
dw0 = port->id << CMD_HDR_PORT_OFF;
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
dw0 |= 3 << CMD_HDR_CMD_OFF;
else
dw0 |= 4 << CMD_HDR_CMD_OFF;
if (tmf && tmf->force_phy) {
dw0 |= CMD_HDR_FORCE_PHY_MSK;
dw0 |= (1 << tmf->phy_id) << CMD_HDR_PHY_ID_OFF;
}
hdr->dw0 = cpu_to_le32(dw0);
/* dw1 */
switch (task->data_dir) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) &&
(task->ata_task.fis.control & ATA_SRST))
dw1 |= 1 << CMD_HDR_RESET_OFF;
dw1 |= (hisi_sas_get_ata_protocol(
&task->ata_task.fis, task->data_dir))
<< CMD_HDR_FRAME_TYPE_OFF;
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
hdr->dw1 = cpu_to_le32(dw1);
/* dw2 */
if (task->ata_task.use_ncq && hisi_sas_get_ncq_tag(task, &hdr_tag)) {
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF;
}
dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF |
2 << CMD_HDR_SG_MOD_OFF;
hdr->dw2 = cpu_to_le32(dw2);
/* dw3 */
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data)
prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot);
if (likely(!task->ata_task.device_control_reg_update))
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
}
static void hisi_sas_internal_abort_quirk_timeout(struct timer_list *t)
{
struct hisi_sas_slot *slot = from_timer(slot, t, internal_abort_timer);
struct hisi_sas_port *port = slot->port;
struct asd_sas_port *asd_sas_port;
struct asd_sas_phy *sas_phy;
if (!port)
return;
asd_sas_port = &port->sas_port;
/* Kick the hardware - send break command */
list_for_each_entry(sas_phy, &asd_sas_port->phy_list, port_phy_el) {
struct hisi_sas_phy *phy = sas_phy->lldd_phy;
struct hisi_hba *hisi_hba = phy->hisi_hba;
int phy_no = sas_phy->id;
u32 link_dfx2;
link_dfx2 = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2);
if ((link_dfx2 == LINK_DFX2_RCVR_HOLD_STS_MSK) ||
(link_dfx2 & LINK_DFX2_SEND_HOLD_STS_MSK)) {
u32 txid_auto;
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no,
TXID_AUTO);
txid_auto |= TXID_AUTO_CTB_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto);
return;
}
}
}
static void prep_abort_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
int device_id, int abort_flag, int tag_to_abort)
{
struct sas_task *task = slot->task;
struct domain_device *dev = task->dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct hisi_sas_port *port = slot->port;
struct timer_list *timer = &slot->internal_abort_timer;
/* setup the quirk timer */
timer_setup(timer, hisi_sas_internal_abort_quirk_timeout, 0);
/* Set the timeout to 10ms less than internal abort timeout */
mod_timer(timer, jiffies + msecs_to_jiffies(100));
/* dw0 */
hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/
(port->id << CMD_HDR_PORT_OFF) |
(dev_is_sata(dev) <<
CMD_HDR_ABORT_DEVICE_TYPE_OFF) |
(abort_flag << CMD_HDR_ABORT_FLAG_OFF));
/* dw1 */
hdr->dw1 = cpu_to_le32(device_id << CMD_HDR_DEV_ID_OFF);
/* dw7 */
hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF);
hdr->transfer_tags = cpu_to_le32(slot->idx);
}
static int phy_up_v2_hw(int phy_no, struct hisi_hba *hisi_hba)
{
int i, res = IRQ_HANDLED;
u32 port_id, link_rate;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd;
struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd;
unsigned long flags;
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1);
if (is_sata_phy_v2_hw(hisi_hba, phy_no))
goto end;
del_timer(&phy->timer);
if (phy_no == 8) {
u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >>
PORT_STATE_PHY8_PORT_NUM_OFF;
link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >>
PORT_STATE_PHY8_CONN_RATE_OFF;
} else {
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
}
if (port_id == 0xf) {
dev_err(dev, "phyup: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
for (i = 0; i < 6; i++) {
u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no,
RX_IDAF_DWORD0 + (i * 4));
frame_rcvd[i] = __swab32(idaf);
}
sas_phy->linkrate = link_rate;
sas_phy->oob_mode = SAS_OOB_MODE;
memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE);
dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate);
phy->port_id = port_id;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
phy->phy_type |= PORT_TYPE_SAS;
phy->phy_attached = 1;
phy->identify.device_type = id->dev_type;
phy->frame_rcvd_size = sizeof(struct sas_identify_frame);
if (phy->identify.device_type == SAS_END_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != SAS_PHY_UNUSED) {
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
if (!timer_pending(&hisi_hba->timer))
set_link_timer_quirk(hisi_hba);
}
hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP);
spin_lock_irqsave(&phy->lock, flags);
if (phy->reset_completion) {
phy->in_reset = 0;
complete(phy->reset_completion);
}
spin_unlock_irqrestore(&phy->lock, flags);
end:
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_PHY_ENABLE_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0);
return res;
}
static bool check_any_wideports_v2_hw(struct hisi_hba *hisi_hba)
{
u32 port_state;
port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
if (port_state & 0x1ff)
return true;
return false;
}
static int phy_down_v2_hw(int phy_no, struct hisi_hba *hisi_hba)
{
u32 phy_state, sl_ctrl, txid_auto;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct hisi_sas_port *port = phy->port;
struct device *dev = hisi_hba->dev;
del_timer(&phy->timer);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1);
phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state);
hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0);
sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL,
sl_ctrl & ~SL_CONTROL_CTA_MSK);
if (port && !get_wideport_bitmap_v2_hw(hisi_hba, port->id))
if (!check_any_wideports_v2_hw(hisi_hba) &&
timer_pending(&hisi_hba->timer))
del_timer(&hisi_hba->timer);
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TXID_AUTO_CT3_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0);
return IRQ_HANDLED;
}
static irqreturn_t int_phy_updown_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irqreturn_t res = IRQ_NONE;
irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO)
>> HGC_INVLD_DQE_INFO_FB_CH0_OFF) & 0x1ff;
while (irq_msk) {
if (irq_msk & 1) {
u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
switch (reg_value & (CHL_INT0_NOT_RDY_MSK |
CHL_INT0_SL_PHY_ENABLE_MSK)) {
case CHL_INT0_SL_PHY_ENABLE_MSK:
/* phy up */
if (phy_up_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
break;
case CHL_INT0_NOT_RDY_MSK:
/* phy down */
if (phy_down_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
break;
case (CHL_INT0_NOT_RDY_MSK |
CHL_INT0_SL_PHY_ENABLE_MSK):
reg_value = hisi_sas_read32(hisi_hba,
PHY_STATE);
if (reg_value & BIT(phy_no)) {
/* phy up */
if (phy_up_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
} else {
/* phy down */
if (phy_down_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
}
break;
default:
break;
}
}
irq_msk >>= 1;
phy_no++;
}
return res;
}
static void phy_bcast_v2_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha = &hisi_hba->sha;
u32 bcast_status;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1);
bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS);
if ((bcast_status & RX_BCAST_CHG_MSK) &&
!test_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags))
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_RX_BCST_ACK_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0);
}
static const struct hisi_sas_hw_error port_ecc_axi_error[] = {
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_ECC_ERR_OFF),
.msg = "dmac_tx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_ECC_ERR_OFF),
.msg = "dmac_rx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF),
.msg = "dma_tx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF),
.msg = "dma_tx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF),
.msg = "dma_rx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF),
.msg = "dma_rx_axi_rd_err",
},
};
static irqreturn_t int_chnl_int_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
struct device *dev = hisi_hba->dev;
u32 ent_msk, ent_tmp, irq_msk;
int phy_no = 0;
ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
ent_tmp = ent_msk;
ent_msk |= ENT_INT_SRC_MSK3_ENT95_MSK_MSK;
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_msk);
irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >>
HGC_INVLD_DQE_INFO_FB_CH3_OFF) & 0x1ff;
while (irq_msk) {
u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
u32 irq_value1 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT1);
u32 irq_value2 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT2);
if ((irq_msk & (1 << phy_no)) && irq_value1) {
int i;
for (i = 0; i < ARRAY_SIZE(port_ecc_axi_error); i++) {
const struct hisi_sas_hw_error *error =
&port_ecc_axi_error[i];
if (!(irq_value1 & error->irq_msk))
continue;
dev_warn(dev, "%s error (phy%d 0x%x) found!\n",
error->msg, phy_no, irq_value1);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT1, irq_value1);
}
if ((irq_msk & (1 << phy_no)) && irq_value2) {
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
if (irq_value2 & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) {
dev_warn(dev, "phy%d identify timeout\n",
phy_no);
hisi_sas_notify_phy_event(phy,
HISI_PHYE_LINK_RESET);
}
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT2, irq_value2);
}
if ((irq_msk & (1 << phy_no)) && irq_value0) {
if (irq_value0 & CHL_INT0_SL_RX_BCST_ACK_MSK)
phy_bcast_v2_hw(phy_no, hisi_hba);
if (irq_value0 & CHL_INT0_PHY_RDY_MSK)
hisi_sas_phy_oob_ready(hisi_hba, phy_no);
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT0, irq_value0
& (~CHL_INT0_HOTPLUG_TOUT_MSK)
& (~CHL_INT0_SL_PHY_ENABLE_MSK)
& (~CHL_INT0_NOT_RDY_MSK));
}
irq_msk &= ~(1 << phy_no);
phy_no++;
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_tmp);
return IRQ_HANDLED;
}
static void
one_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ecc_error;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(one_bit_ecc_errors); i++) {
ecc_error = &one_bit_ecc_errors[i];
if (irq_value & ecc_error->irq_msk) {
val = hisi_sas_read32(hisi_hba, ecc_error->reg);
val &= ecc_error->msk;
val >>= ecc_error->shift;
dev_warn(dev, ecc_error->msg, val);
}
}
}
static void multi_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba,
u32 irq_value)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ecc_error;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(multi_bit_ecc_errors); i++) {
ecc_error = &multi_bit_ecc_errors[i];
if (irq_value & ecc_error->irq_msk) {
val = hisi_sas_read32(hisi_hba, ecc_error->reg);
val &= ecc_error->msk;
val >>= ecc_error->shift;
dev_err(dev, ecc_error->msg, irq_value, val);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
return;
}
static irqreturn_t fatal_ecc_int_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_value, irq_msk;
irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk | 0xffffffff);
irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR);
if (irq_value) {
one_bit_ecc_error_process_v2_hw(hisi_hba, irq_value);
multi_bit_ecc_error_process_v2_hw(hisi_hba, irq_value);
}
hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk);
return IRQ_HANDLED;
}
static const struct hisi_sas_hw_error axi_error[] = {
{ .msk = BIT(0), .msg = "IOST_AXI_W_ERR" },
{ .msk = BIT(1), .msg = "IOST_AXI_R_ERR" },
{ .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" },
{ .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" },
{ .msk = BIT(4), .msg = "SATA_AXI_W_ERR" },
{ .msk = BIT(5), .msg = "SATA_AXI_R_ERR" },
{ .msk = BIT(6), .msg = "DQE_AXI_R_ERR" },
{ .msk = BIT(7), .msg = "CQE_AXI_W_ERR" },
{},
};
static const struct hisi_sas_hw_error fifo_error[] = {
{ .msk = BIT(8), .msg = "CQE_WINFO_FIFO" },
{ .msk = BIT(9), .msg = "CQE_MSG_FIFIO" },
{ .msk = BIT(10), .msg = "GETDQE_FIFO" },
{ .msk = BIT(11), .msg = "CMDP_FIFO" },
{ .msk = BIT(12), .msg = "AWTCTRL_FIFO" },
{},
};
static const struct hisi_sas_hw_error fatal_axi_errors[] = {
{
.irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF),
.msg = "write pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF),
.msg = "iptt no match slot",
},
{
.irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF),
.msg = "read pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_AXI_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = axi_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = fifo_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_LM_OFF),
.msg = "LM add/fetch list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ABT_OFF),
.msg = "SAS_HGC_ABT fetch LM list",
},
};
static irqreturn_t fatal_axi_int_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_value, irq_msk, err_value;
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *axi_error;
int i;
irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0xfffffffe);
irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
for (i = 0; i < ARRAY_SIZE(fatal_axi_errors); i++) {
axi_error = &fatal_axi_errors[i];
if (!(irq_value & axi_error->irq_msk))
continue;
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
1 << axi_error->shift);
if (axi_error->sub) {
const struct hisi_sas_hw_error *sub = axi_error->sub;
err_value = hisi_sas_read32(hisi_hba, axi_error->reg);
for (; sub->msk || sub->msg; sub++) {
if (!(err_value & sub->msk))
continue;
dev_err(dev, "%s (0x%x) found!\n",
sub->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
} else {
dev_err(dev, "%s (0x%x) found!\n",
axi_error->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) {
u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR);
u32 dev_id = reg_val & ITCT_DEV_MSK;
struct hisi_sas_device *sas_dev = &hisi_hba->devices[dev_id];
hisi_sas_write32(hisi_hba, ITCT_CLR, 0);
dev_dbg(dev, "clear ITCT ok\n");
complete(sas_dev->completion);
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk);
return IRQ_HANDLED;
}
static void cq_tasklet_v2_hw(unsigned long val)
{
struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val;
struct hisi_hba *hisi_hba = cq->hisi_hba;
struct hisi_sas_slot *slot;
struct hisi_sas_itct *itct;
struct hisi_sas_complete_v2_hdr *complete_queue;
u32 rd_point = cq->rd_point, wr_point, dev_id;
int queue = cq->id;
if (unlikely(hisi_hba->reject_stp_links_msk))
phys_try_accept_stp_links_v2_hw(hisi_hba);
complete_queue = hisi_hba->complete_hdr[queue];
wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR +
(0x14 * queue));
while (rd_point != wr_point) {
struct hisi_sas_complete_v2_hdr *complete_hdr;
int iptt;
complete_hdr = &complete_queue[rd_point];
/* Check for NCQ completion */
if (complete_hdr->act) {
u32 act_tmp = le32_to_cpu(complete_hdr->act);
int ncq_tag_count = ffs(act_tmp);
u32 dw1 = le32_to_cpu(complete_hdr->dw1);
dev_id = (dw1 & CMPLT_HDR_DEV_ID_MSK) >>
CMPLT_HDR_DEV_ID_OFF;
itct = &hisi_hba->itct[dev_id];
/* The NCQ tags are held in the itct header */
while (ncq_tag_count) {
__le64 *_ncq_tag = &itct->qw4_15[0], __ncq_tag;
u64 ncq_tag;
ncq_tag_count--;
__ncq_tag = _ncq_tag[ncq_tag_count / 5];
ncq_tag = le64_to_cpu(__ncq_tag);
iptt = (ncq_tag >> (ncq_tag_count % 5) * 12) &
0xfff;
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v2_hw(hisi_hba, slot);
act_tmp &= ~(1 << ncq_tag_count);
ncq_tag_count = ffs(act_tmp);
}
} else {
u32 dw1 = le32_to_cpu(complete_hdr->dw1);
iptt = dw1 & CMPLT_HDR_IPTT_MSK;
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v2_hw(hisi_hba, slot);
}
if (++rd_point >= HISI_SAS_QUEUE_SLOTS)
rd_point = 0;
}
/* update rd_point */
cq->rd_point = rd_point;
hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point);
}
static irqreturn_t cq_interrupt_v2_hw(int irq_no, void *p)
{
struct hisi_sas_cq *cq = p;
struct hisi_hba *hisi_hba = cq->hisi_hba;
int queue = cq->id;
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue);
tasklet_schedule(&cq->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t sata_int_v2_hw(int irq_no, void *p)
{
struct hisi_sas_phy *phy = p;
struct hisi_hba *hisi_hba = phy->hisi_hba;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
struct hisi_sas_initial_fis *initial_fis;
struct dev_to_host_fis *fis;
u32 ent_tmp, ent_msk, ent_int, port_id, link_rate, hard_phy_linkrate;
irqreturn_t res = IRQ_HANDLED;
u8 attached_sas_addr[SAS_ADDR_SIZE] = {0};
unsigned long flags;
int phy_no, offset;
del_timer(&phy->timer);
phy_no = sas_phy->id;
initial_fis = &hisi_hba->initial_fis[phy_no];
fis = &initial_fis->fis;
offset = 4 * (phy_no / 4);
ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK1 + offset);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset,
ent_msk | 1 << ((phy_no % 4) * 8));
ent_int = hisi_sas_read32(hisi_hba, ENT_INT_SRC1 + offset);
ent_tmp = ent_int & (1 << (ENT_INT_SRC1_D2H_FIS_CH1_OFF *
(phy_no % 4)));
ent_int >>= ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4);
if ((ent_int & ENT_INT_SRC1_D2H_FIS_CH0_MSK) == 0) {
dev_warn(dev, "sata int: phy%d did not receive FIS\n", phy_no);
res = IRQ_NONE;
goto end;
}
/* check ERR bit of Status Register */
if (fis->status & ATA_ERR) {
dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n", phy_no,
fis->status);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
res = IRQ_NONE;
goto end;
}
if (unlikely(phy_no == 8)) {
u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >>
PORT_STATE_PHY8_PORT_NUM_OFF;
link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >>
PORT_STATE_PHY8_CONN_RATE_OFF;
} else {
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
}
if (port_id == 0xf) {
dev_err(dev, "sata int: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
sas_phy->linkrate = link_rate;
hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no,
HARD_PHY_LINKRATE);
phy->maximum_linkrate = hard_phy_linkrate & 0xf;
phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf;
sas_phy->oob_mode = SATA_OOB_MODE;
/* Make up some unique SAS address */
attached_sas_addr[0] = 0x50;
attached_sas_addr[6] = hisi_hba->shost->host_no;
attached_sas_addr[7] = phy_no;
memcpy(sas_phy->attached_sas_addr, attached_sas_addr, SAS_ADDR_SIZE);
memcpy(sas_phy->frame_rcvd, fis, sizeof(struct dev_to_host_fis));
dev_info(dev, "sata int phyup: phy%d link_rate=%d\n", phy_no, link_rate);
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
phy->port_id = port_id;
phy->phy_type |= PORT_TYPE_SATA;
phy->phy_attached = 1;
phy->identify.device_type = SAS_SATA_DEV;
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP);
spin_lock_irqsave(&phy->lock, flags);
if (phy->reset_completion) {
phy->in_reset = 0;
complete(phy->reset_completion);
}
spin_unlock_irqrestore(&phy->lock, flags);
end:
hisi_sas_write32(hisi_hba, ENT_INT_SRC1 + offset, ent_tmp);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk);
return res;
}
static irq_handler_t phy_interrupts[HISI_SAS_PHY_INT_NR] = {
int_phy_updown_v2_hw,
int_chnl_int_v2_hw,
};
static irq_handler_t fatal_interrupts[HISI_SAS_FATAL_INT_NR] = {
fatal_ecc_int_v2_hw,
fatal_axi_int_v2_hw
};
/**
* There is a limitation in the hip06 chipset that we need
* to map in all mbigen interrupts, even if they are not used.
*/
static int interrupt_init_v2_hw(struct hisi_hba *hisi_hba)
{
struct platform_device *pdev = hisi_hba->platform_dev;
struct device *dev = &pdev->dev;
int irq, rc, irq_map[128];
int i, phy_no, fatal_no, queue_no, k;
for (i = 0; i < 128; i++)
irq_map[i] = platform_get_irq(pdev, i);
for (i = 0; i < HISI_SAS_PHY_INT_NR; i++) {
irq = irq_map[i + 1]; /* Phy up/down is irq1 */
rc = devm_request_irq(dev, irq, phy_interrupts[i], 0,
DRV_NAME " phy", hisi_hba);
if (rc) {
dev_err(dev, "irq init: could not request "
"phy interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_phy_int_irqs;
}
}
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
irq = irq_map[phy_no + 72];
rc = devm_request_irq(dev, irq, sata_int_v2_hw, 0,
DRV_NAME " sata", phy);
if (rc) {
dev_err(dev, "irq init: could not request "
"sata interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_sata_int_irqs;
}
}
for (fatal_no = 0; fatal_no < HISI_SAS_FATAL_INT_NR; fatal_no++) {
irq = irq_map[fatal_no + 81];
rc = devm_request_irq(dev, irq, fatal_interrupts[fatal_no], 0,
DRV_NAME " fatal", hisi_hba);
if (rc) {
dev_err(dev,
"irq init: could not request fatal interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_fatal_int_irqs;
}
}
for (queue_no = 0; queue_no < hisi_hba->queue_count; queue_no++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[queue_no];
struct tasklet_struct *t = &cq->tasklet;
irq = irq_map[queue_no + 96];
rc = devm_request_irq(dev, irq, cq_interrupt_v2_hw, 0,
DRV_NAME " cq", cq);
if (rc) {
dev_err(dev,
"irq init: could not request cq interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_cq_int_irqs;
}
tasklet_init(t, cq_tasklet_v2_hw, (unsigned long)cq);
}
scsi: hisi_sas: Issue internal abort on all relevant queues To support queue mapped to a CPU, it needs to be ensured that issuing an internal abort is safe, in that it is guaranteed that an internal abort is processed for a single IO or a device after all the relevant command(s) which it is attempting to abort have been processed by the controller. Currently we only deliver commands for any device on a single queue to solve this problem, as we know that commands issued on the same queue will be processed in order, and we will not have a scenario where the internal abort is racing against a command(s) which it is trying to abort. To enqueue commands on queue mapped to a CPU, choosing a queue for an command is based on the associated queue for the current CPU, so this is not safe for internal abort since it would definitely not be guaranteed that commands for the command devices are issued on the same queue. To solve this issue, we take a bludgeoning approach, and issue a separate internal abort on any queue(s) relevant to the command or device, in that we will be guaranteed that at least one of these internal aborts will be received last in the controller. So, for aborting a single command, we can just force the internal abort to be issued on the same queue as the command which we are trying to abort. For aborting all commands associated with a device, we issue a separate internal abort on all relevant queues. Issuing multiple internal aborts in this fashion would have not side affect. Signed-off-by: John Garry <john.garry@huawei.com> Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-02-06 18:52:54 +08:00
hisi_hba->cq_nvecs = hisi_hba->queue_count;
return 0;
free_cq_int_irqs:
for (k = 0; k < queue_no; k++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[k];
free_irq(irq_map[k + 96], cq);
tasklet_kill(&cq->tasklet);
}
free_fatal_int_irqs:
for (k = 0; k < fatal_no; k++)
free_irq(irq_map[k + 81], hisi_hba);
free_sata_int_irqs:
for (k = 0; k < phy_no; k++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[k];
free_irq(irq_map[k + 72], phy);
}
free_phy_int_irqs:
for (k = 0; k < i; k++)
free_irq(irq_map[k + 1], hisi_hba);
return rc;
}
static int hisi_sas_v2_init(struct hisi_hba *hisi_hba)
{
int rc;
memset(hisi_hba->sata_dev_bitmap, 0, sizeof(hisi_hba->sata_dev_bitmap));
rc = hw_init_v2_hw(hisi_hba);
if (rc)
return rc;
rc = interrupt_init_v2_hw(hisi_hba);
if (rc)
return rc;
return 0;
}
static void interrupt_disable_v2_hw(struct hisi_hba *hisi_hba)
{
struct platform_device *pdev = hisi_hba->platform_dev;
int i;
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff);
}
for (i = 0; i < 128; i++)
synchronize_irq(platform_get_irq(pdev, i));
}
static u32 get_phys_state_v2_hw(struct hisi_hba *hisi_hba)
{
return hisi_sas_read32(hisi_hba, PHY_STATE);
}
static int soft_reset_v2_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc, cnt;
interrupt_disable_v2_hw(hisi_hba);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0);
hisi_sas_kill_tasklets(hisi_hba);
hisi_sas_stop_phys(hisi_hba);
mdelay(10);
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, 0x1);
/* wait until bus idle */
cnt = 0;
while (1) {
u32 status = hisi_sas_read32_relaxed(hisi_hba,
AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN);
if (status == 0x3)
break;
udelay(10);
if (cnt++ > 10) {
dev_err(dev, "wait axi bus state to idle timeout!\n");
return -1;
}
}
hisi_sas_init_mem(hisi_hba);
rc = hw_init_v2_hw(hisi_hba);
if (rc)
return rc;
phys_reject_stp_links_v2_hw(hisi_hba);
return 0;
}
static int write_gpio_v2_hw(struct hisi_hba *hisi_hba, u8 reg_type,
u8 reg_index, u8 reg_count, u8 *write_data)
{
struct device *dev = hisi_hba->dev;
int phy_no, count;
if (!hisi_hba->sgpio_regs)
return -EOPNOTSUPP;
switch (reg_type) {
case SAS_GPIO_REG_TX:
count = reg_count * 4;
count = min(count, hisi_hba->n_phy);
for (phy_no = 0; phy_no < count; phy_no++) {
/*
* GPIO_TX[n] register has the highest numbered drive
* of the four in the first byte and the lowest
* numbered drive in the fourth byte.
* See SFF-8485 Rev. 0.7 Table 24.
*/
void __iomem *reg_addr = hisi_hba->sgpio_regs +
reg_index * 4 + phy_no;
int data_idx = phy_no + 3 - (phy_no % 4) * 2;
writeb(write_data[data_idx], reg_addr);
}
break;
default:
dev_err(dev, "write gpio: unsupported or bad reg type %d\n",
reg_type);
return -EINVAL;
}
return 0;
}
static int wait_cmds_complete_timeout_v2_hw(struct hisi_hba *hisi_hba,
int delay_ms, int timeout_ms)
{
struct device *dev = hisi_hba->dev;
int entries, entries_old = 0, time;
for (time = 0; time < timeout_ms; time += delay_ms) {
entries = hisi_sas_read32(hisi_hba, CQE_SEND_CNT);
if (entries == entries_old)
break;
entries_old = entries;
msleep(delay_ms);
}
if (time >= timeout_ms)
return -ETIMEDOUT;
dev_dbg(dev, "wait commands complete %dms\n", time);
return 0;
}
static struct device_attribute *host_attrs_v2_hw[] = {
&dev_attr_phy_event_threshold,
NULL
};
static struct scsi_host_template sht_v2_hw = {
.name = DRV_NAME,
.module = THIS_MODULE,
.queuecommand = sas_queuecommand,
.target_alloc = sas_target_alloc,
.slave_configure = hisi_sas_slave_configure,
.scan_finished = hisi_sas_scan_finished,
.scan_start = hisi_sas_scan_start,
.change_queue_depth = sas_change_queue_depth,
.bios_param = sas_bios_param,
.this_id = -1,
.sg_tablesize = HISI_SAS_SGE_PAGE_CNT,
.max_sectors = SCSI_DEFAULT_MAX_SECTORS,
.eh_device_reset_handler = sas_eh_device_reset_handler,
.eh_target_reset_handler = sas_eh_target_reset_handler,
.target_destroy = sas_target_destroy,
.ioctl = sas_ioctl,
.shost_attrs = host_attrs_v2_hw,
};
static const struct hisi_sas_hw hisi_sas_v2_hw = {
.hw_init = hisi_sas_v2_init,
.setup_itct = setup_itct_v2_hw,
.slot_index_alloc = slot_index_alloc_quirk_v2_hw,
.alloc_dev = alloc_dev_quirk_v2_hw,
.sl_notify_ssp = sl_notify_ssp_v2_hw,
.get_wideport_bitmap = get_wideport_bitmap_v2_hw,
.clear_itct = clear_itct_v2_hw,
.free_device = free_device_v2_hw,
.prep_smp = prep_smp_v2_hw,
.prep_ssp = prep_ssp_v2_hw,
.prep_stp = prep_ata_v2_hw,
.prep_abort = prep_abort_v2_hw,
.get_free_slot = get_free_slot_v2_hw,
.start_delivery = start_delivery_v2_hw,
.slot_complete = slot_complete_v2_hw,
.phys_init = phys_init_v2_hw,
.phy_start = start_phy_v2_hw,
.phy_disable = disable_phy_v2_hw,
.phy_hard_reset = phy_hard_reset_v2_hw,
.get_events = phy_get_events_v2_hw,
.phy_set_linkrate = phy_set_linkrate_v2_hw,
.phy_get_max_linkrate = phy_get_max_linkrate_v2_hw,
.max_command_entries = HISI_SAS_COMMAND_ENTRIES_V2_HW,
.complete_hdr_size = sizeof(struct hisi_sas_complete_v2_hdr),
.soft_reset = soft_reset_v2_hw,
.get_phys_state = get_phys_state_v2_hw,
.write_gpio = write_gpio_v2_hw,
.wait_cmds_complete_timeout = wait_cmds_complete_timeout_v2_hw,
.sht = &sht_v2_hw,
};
static int hisi_sas_v2_probe(struct platform_device *pdev)
{
/*
* Check if we should defer the probe before we probe the
* upper layer, as it's hard to defer later on.
*/
int ret = platform_get_irq(pdev, 0);
if (ret < 0) {
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "cannot obtain irq\n");
return ret;
}
return hisi_sas_probe(pdev, &hisi_sas_v2_hw);
}
static int hisi_sas_v2_remove(struct platform_device *pdev)
{
struct sas_ha_struct *sha = platform_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
hisi_sas_kill_tasklets(hisi_hba);
return hisi_sas_remove(pdev);
}
static const struct of_device_id sas_v2_of_match[] = {
{ .compatible = "hisilicon,hip06-sas-v2",},
{ .compatible = "hisilicon,hip07-sas-v2",},
{},
};
MODULE_DEVICE_TABLE(of, sas_v2_of_match);
static const struct acpi_device_id sas_v2_acpi_match[] = {
{ "HISI0162", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, sas_v2_acpi_match);
static struct platform_driver hisi_sas_v2_driver = {
.probe = hisi_sas_v2_probe,
.remove = hisi_sas_v2_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = sas_v2_of_match,
.acpi_match_table = ACPI_PTR(sas_v2_acpi_match),
},
};
module_platform_driver(hisi_sas_v2_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
MODULE_DESCRIPTION("HISILICON SAS controller v2 hw driver");
MODULE_ALIAS("platform:" DRV_NAME);