OpenCloudOS-Kernel/fs/jfs/acl.c

159 lines
3.2 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) International Business Machines Corp., 2002-2004
* Copyright (C) Andreas Gruenbacher, 2001
* Copyright (C) Linus Torvalds, 1991, 1992
*/
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/posix_acl_xattr.h>
#include "jfs_incore.h"
#include "jfs_txnmgr.h"
#include "jfs_xattr.h"
#include "jfs_acl.h"
struct posix_acl *jfs_get_acl(struct inode *inode, int type, bool rcu)
{
struct posix_acl *acl;
char *ea_name;
int size;
char *value = NULL;
if (rcu)
return ERR_PTR(-ECHILD);
switch(type) {
case ACL_TYPE_ACCESS:
ea_name = XATTR_NAME_POSIX_ACL_ACCESS;
break;
case ACL_TYPE_DEFAULT:
ea_name = XATTR_NAME_POSIX_ACL_DEFAULT;
break;
default:
return ERR_PTR(-EINVAL);
}
size = __jfs_getxattr(inode, ea_name, NULL, 0);
if (size > 0) {
value = kmalloc(size, GFP_KERNEL);
if (!value)
return ERR_PTR(-ENOMEM);
size = __jfs_getxattr(inode, ea_name, value, size);
}
if (size < 0) {
if (size == -ENODATA)
acl = NULL;
else
acl = ERR_PTR(size);
} else {
acl = posix_acl_from_xattr(&init_user_ns, value, size);
}
kfree(value);
return acl;
}
static int __jfs_set_acl(tid_t tid, struct inode *inode, int type,
struct posix_acl *acl)
{
char *ea_name;
int rc;
int size = 0;
char *value = NULL;
switch (type) {
case ACL_TYPE_ACCESS:
ea_name = XATTR_NAME_POSIX_ACL_ACCESS;
break;
case ACL_TYPE_DEFAULT:
ea_name = XATTR_NAME_POSIX_ACL_DEFAULT;
break;
default:
return -EINVAL;
}
if (acl) {
size = posix_acl_xattr_size(acl->a_count);
value = kmalloc(size, GFP_KERNEL);
if (!value)
return -ENOMEM;
rc = posix_acl_to_xattr(&init_user_ns, acl, value, size);
if (rc < 0)
goto out;
}
rc = __jfs_setxattr(tid, inode, ea_name, value, size, 0);
out:
kfree(value);
if (!rc)
set_cached_acl(inode, type, acl);
return rc;
}
int jfs_set_acl(struct mnt_idmap *idmap, struct dentry *dentry,
struct posix_acl *acl, int type)
{
int rc;
tid_t tid;
int update_mode = 0;
fs: pass dentry to set acl method The current way of setting and getting posix acls through the generic xattr interface is error prone and type unsafe. The vfs needs to interpret and fixup posix acls before storing or reporting it to userspace. Various hacks exist to make this work. The code is hard to understand and difficult to maintain in it's current form. Instead of making this work by hacking posix acls through xattr handlers we are building a dedicated posix acl api around the get and set inode operations. This removes a lot of hackiness and makes the codepaths easier to maintain. A lot of background can be found in [1]. Since some filesystem rely on the dentry being available to them when setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode operation. But since ->set_acl() is required in order to use the generic posix acl xattr handlers filesystems that do not implement this inode operation cannot use the handler and need to implement their own dedicated posix acl handlers. Update the ->set_acl() inode method to take a dentry argument. This allows all filesystems to rely on ->set_acl(). As far as I can tell all codepaths can be switched to rely on the dentry instead of just the inode. Note that the original motivation for passing the dentry separate from the inode instead of just the dentry in the xattr handlers was because of security modules that call security_d_instantiate(). This hook is called during d_instantiate_new(), d_add(), __d_instantiate_anon(), and d_splice_alias() to initialize the inode's security context and possibly to set security.* xattrs. Since this only affects security.* xattrs this is completely irrelevant for posix acls. Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1] Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-09-23 16:29:39 +08:00
struct inode *inode = d_inode(dentry);
umode_t mode = inode->i_mode;
tid = txBegin(inode->i_sb, 0);
mutex_lock(&JFS_IP(inode)->commit_mutex);
if (type == ACL_TYPE_ACCESS && acl) {
rc = posix_acl_update_mode(&nop_mnt_idmap, inode, &mode, &acl);
if (rc)
goto end_tx;
if (mode != inode->i_mode)
update_mode = 1;
}
rc = __jfs_set_acl(tid, inode, type, acl);
if (!rc) {
if (update_mode) {
inode->i_mode = mode;
inode_set_ctime_current(inode);
mark_inode_dirty(inode);
}
rc = txCommit(tid, 1, &inode, 0);
}
end_tx:
txEnd(tid);
mutex_unlock(&JFS_IP(inode)->commit_mutex);
return rc;
}
int jfs_init_acl(tid_t tid, struct inode *inode, struct inode *dir)
{
struct posix_acl *default_acl, *acl;
int rc = 0;
rc = posix_acl_create(dir, &inode->i_mode, &default_acl, &acl);
if (rc)
return rc;
if (default_acl) {
rc = __jfs_set_acl(tid, inode, ACL_TYPE_DEFAULT, default_acl);
posix_acl_release(default_acl);
} else {
inode->i_default_acl = NULL;
}
if (acl) {
if (!rc)
rc = __jfs_set_acl(tid, inode, ACL_TYPE_ACCESS, acl);
posix_acl_release(acl);
} else {
inode->i_acl = NULL;
}
JFS_IP(inode)->mode2 = (JFS_IP(inode)->mode2 & 0xffff0000) |
inode->i_mode;
return rc;
}