OpenCloudOS-Kernel/sound/soc/codecs/wm_adsp.c

4474 lines
110 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* wm_adsp.c -- Wolfson ADSP support
*
* Copyright 2012 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*/
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/list.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "wm_adsp.h"
#define adsp_crit(_dsp, fmt, ...) \
dev_crit(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define adsp_err(_dsp, fmt, ...) \
dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define adsp_warn(_dsp, fmt, ...) \
dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define adsp_info(_dsp, fmt, ...) \
dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define adsp_dbg(_dsp, fmt, ...) \
dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define compr_err(_obj, fmt, ...) \
adsp_err(_obj->dsp, "%s: " fmt, _obj->name ? _obj->name : "legacy", \
##__VA_ARGS__)
#define compr_dbg(_obj, fmt, ...) \
adsp_dbg(_obj->dsp, "%s: " fmt, _obj->name ? _obj->name : "legacy", \
##__VA_ARGS__)
#define ADSP1_CONTROL_1 0x00
#define ADSP1_CONTROL_2 0x02
#define ADSP1_CONTROL_3 0x03
#define ADSP1_CONTROL_4 0x04
#define ADSP1_CONTROL_5 0x06
#define ADSP1_CONTROL_6 0x07
#define ADSP1_CONTROL_7 0x08
#define ADSP1_CONTROL_8 0x09
#define ADSP1_CONTROL_9 0x0A
#define ADSP1_CONTROL_10 0x0B
#define ADSP1_CONTROL_11 0x0C
#define ADSP1_CONTROL_12 0x0D
#define ADSP1_CONTROL_13 0x0F
#define ADSP1_CONTROL_14 0x10
#define ADSP1_CONTROL_15 0x11
#define ADSP1_CONTROL_16 0x12
#define ADSP1_CONTROL_17 0x13
#define ADSP1_CONTROL_18 0x14
#define ADSP1_CONTROL_19 0x16
#define ADSP1_CONTROL_20 0x17
#define ADSP1_CONTROL_21 0x18
#define ADSP1_CONTROL_22 0x1A
#define ADSP1_CONTROL_23 0x1B
#define ADSP1_CONTROL_24 0x1C
#define ADSP1_CONTROL_25 0x1E
#define ADSP1_CONTROL_26 0x20
#define ADSP1_CONTROL_27 0x21
#define ADSP1_CONTROL_28 0x22
#define ADSP1_CONTROL_29 0x23
#define ADSP1_CONTROL_30 0x24
#define ADSP1_CONTROL_31 0x26
/*
* ADSP1 Control 19
*/
#define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
/*
* ADSP1 Control 30
*/
#define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
#define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP1_START 0x0001 /* DSP1_START */
#define ADSP1_START_MASK 0x0001 /* DSP1_START */
#define ADSP1_START_SHIFT 0 /* DSP1_START */
#define ADSP1_START_WIDTH 1 /* DSP1_START */
/*
* ADSP1 Control 31
*/
#define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2_CONTROL 0x0
#define ADSP2_CLOCKING 0x1
#define ADSP2V2_CLOCKING 0x2
#define ADSP2_STATUS1 0x4
#define ADSP2_WDMA_CONFIG_1 0x30
#define ADSP2_WDMA_CONFIG_2 0x31
#define ADSP2V2_WDMA_CONFIG_2 0x32
#define ADSP2_RDMA_CONFIG_1 0x34
#define ADSP2_SCRATCH0 0x40
#define ADSP2_SCRATCH1 0x41
#define ADSP2_SCRATCH2 0x42
#define ADSP2_SCRATCH3 0x43
#define ADSP2V2_SCRATCH0_1 0x40
#define ADSP2V2_SCRATCH2_3 0x42
/*
* ADSP2 Control
*/
#define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
#define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP2_START 0x0001 /* DSP1_START */
#define ADSP2_START_MASK 0x0001 /* DSP1_START */
#define ADSP2_START_SHIFT 0 /* DSP1_START */
#define ADSP2_START_WIDTH 1 /* DSP1_START */
/*
* ADSP2 clocking
*/
#define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
/*
* ADSP2V2 clocking
*/
#define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
#define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
#define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
/*
* ADSP2 Status 1
*/
#define ADSP2_RAM_RDY 0x0001
#define ADSP2_RAM_RDY_MASK 0x0001
#define ADSP2_RAM_RDY_SHIFT 0
#define ADSP2_RAM_RDY_WIDTH 1
/*
* ADSP2 Lock support
*/
#define ADSP2_LOCK_CODE_0 0x5555
#define ADSP2_LOCK_CODE_1 0xAAAA
#define ADSP2_WATCHDOG 0x0A
#define ADSP2_BUS_ERR_ADDR 0x52
#define ADSP2_REGION_LOCK_STATUS 0x64
#define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
#define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
#define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
#define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
#define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
#define ADSP2_LOCK_REGION_CTRL 0x7A
#define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
#define ADSP2_REGION_LOCK_ERR_MASK 0x8000
#define ADSP2_SLAVE_ERR_MASK 0x4000
#define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
#define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
#define ADSP2_CTRL_ERR_EINT 0x0001
#define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
#define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
#define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
#define ADSP2_PMEM_ERR_ADDR_SHIFT 16
#define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
#define ADSP2_LOCK_REGION_SHIFT 16
#define ADSP_MAX_STD_CTRL_SIZE 512
#define WM_ADSP_ACKED_CTL_TIMEOUT_MS 100
#define WM_ADSP_ACKED_CTL_N_QUICKPOLLS 10
#define WM_ADSP_ACKED_CTL_MIN_VALUE 0
#define WM_ADSP_ACKED_CTL_MAX_VALUE 0xFFFFFF
/*
* Event control messages
*/
#define WM_ADSP_FW_EVENT_SHUTDOWN 0x000001
/*
* HALO system info
*/
#define HALO_AHBM_WINDOW_DEBUG_0 0x02040
#define HALO_AHBM_WINDOW_DEBUG_1 0x02044
/*
* HALO core
*/
#define HALO_SCRATCH1 0x005c0
#define HALO_SCRATCH2 0x005c8
#define HALO_SCRATCH3 0x005d0
#define HALO_SCRATCH4 0x005d8
#define HALO_CCM_CORE_CONTROL 0x41000
#define HALO_CORE_SOFT_RESET 0x00010
#define HALO_WDT_CONTROL 0x47000
/*
* HALO MPU banks
*/
#define HALO_MPU_XMEM_ACCESS_0 0x43000
#define HALO_MPU_YMEM_ACCESS_0 0x43004
#define HALO_MPU_WINDOW_ACCESS_0 0x43008
#define HALO_MPU_XREG_ACCESS_0 0x4300C
#define HALO_MPU_YREG_ACCESS_0 0x43014
#define HALO_MPU_XMEM_ACCESS_1 0x43018
#define HALO_MPU_YMEM_ACCESS_1 0x4301C
#define HALO_MPU_WINDOW_ACCESS_1 0x43020
#define HALO_MPU_XREG_ACCESS_1 0x43024
#define HALO_MPU_YREG_ACCESS_1 0x4302C
#define HALO_MPU_XMEM_ACCESS_2 0x43030
#define HALO_MPU_YMEM_ACCESS_2 0x43034
#define HALO_MPU_WINDOW_ACCESS_2 0x43038
#define HALO_MPU_XREG_ACCESS_2 0x4303C
#define HALO_MPU_YREG_ACCESS_2 0x43044
#define HALO_MPU_XMEM_ACCESS_3 0x43048
#define HALO_MPU_YMEM_ACCESS_3 0x4304C
#define HALO_MPU_WINDOW_ACCESS_3 0x43050
#define HALO_MPU_XREG_ACCESS_3 0x43054
#define HALO_MPU_YREG_ACCESS_3 0x4305C
#define HALO_MPU_XM_VIO_ADDR 0x43100
#define HALO_MPU_XM_VIO_STATUS 0x43104
#define HALO_MPU_YM_VIO_ADDR 0x43108
#define HALO_MPU_YM_VIO_STATUS 0x4310C
#define HALO_MPU_PM_VIO_ADDR 0x43110
#define HALO_MPU_PM_VIO_STATUS 0x43114
#define HALO_MPU_LOCK_CONFIG 0x43140
/*
* HALO_AHBM_WINDOW_DEBUG_1
*/
#define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
#define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
#define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
/*
* HALO_CCM_CORE_CONTROL
*/
#define HALO_CORE_EN 0x00000001
/*
* HALO_CORE_SOFT_RESET
*/
#define HALO_CORE_SOFT_RESET_MASK 0x00000001
/*
* HALO_WDT_CONTROL
*/
#define HALO_WDT_EN_MASK 0x00000001
/*
* HALO_MPU_?M_VIO_STATUS
*/
#define HALO_MPU_VIO_STS_MASK 0x007e0000
#define HALO_MPU_VIO_STS_SHIFT 17
#define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
#define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
#define HALO_MPU_VIO_ERR_SRC_SHIFT 0
static struct wm_adsp_ops wm_adsp1_ops;
static struct wm_adsp_ops wm_adsp2_ops[];
static struct wm_adsp_ops wm_halo_ops;
struct wm_adsp_buf {
struct list_head list;
void *buf;
};
static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len,
struct list_head *list)
{
struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (buf == NULL)
return NULL;
buf->buf = vmalloc(len);
if (!buf->buf) {
kfree(buf);
return NULL;
}
memcpy(buf->buf, src, len);
if (list)
list_add_tail(&buf->list, list);
return buf;
}
static void wm_adsp_buf_free(struct list_head *list)
{
while (!list_empty(list)) {
struct wm_adsp_buf *buf = list_first_entry(list,
struct wm_adsp_buf,
list);
list_del(&buf->list);
vfree(buf->buf);
kfree(buf);
}
}
#define WM_ADSP_FW_MBC_VSS 0
#define WM_ADSP_FW_HIFI 1
#define WM_ADSP_FW_TX 2
#define WM_ADSP_FW_TX_SPK 3
#define WM_ADSP_FW_RX 4
#define WM_ADSP_FW_RX_ANC 5
#define WM_ADSP_FW_CTRL 6
#define WM_ADSP_FW_ASR 7
#define WM_ADSP_FW_TRACE 8
#define WM_ADSP_FW_SPK_PROT 9
#define WM_ADSP_FW_MISC 10
#define WM_ADSP_NUM_FW 11
static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = {
[WM_ADSP_FW_MBC_VSS] = "MBC/VSS",
[WM_ADSP_FW_HIFI] = "MasterHiFi",
[WM_ADSP_FW_TX] = "Tx",
[WM_ADSP_FW_TX_SPK] = "Tx Speaker",
[WM_ADSP_FW_RX] = "Rx",
[WM_ADSP_FW_RX_ANC] = "Rx ANC",
[WM_ADSP_FW_CTRL] = "Voice Ctrl",
[WM_ADSP_FW_ASR] = "ASR Assist",
[WM_ADSP_FW_TRACE] = "Dbg Trace",
[WM_ADSP_FW_SPK_PROT] = "Protection",
[WM_ADSP_FW_MISC] = "Misc",
};
struct wm_adsp_system_config_xm_hdr {
__be32 sys_enable;
__be32 fw_id;
__be32 fw_rev;
__be32 boot_status;
__be32 watchdog;
__be32 dma_buffer_size;
__be32 rdma[6];
__be32 wdma[8];
__be32 build_job_name[3];
__be32 build_job_number;
};
struct wm_halo_system_config_xm_hdr {
__be32 halo_heartbeat;
__be32 build_job_name[3];
__be32 build_job_number;
};
struct wm_adsp_alg_xm_struct {
__be32 magic;
__be32 smoothing;
__be32 threshold;
__be32 host_buf_ptr;
__be32 start_seq;
__be32 high_water_mark;
__be32 low_water_mark;
__be64 smoothed_power;
};
struct wm_adsp_host_buf_coeff_v1 {
__be32 host_buf_ptr; /* Host buffer pointer */
__be32 versions; /* Version numbers */
__be32 name[4]; /* The buffer name */
};
struct wm_adsp_buffer {
__be32 buf1_base; /* Base addr of first buffer area */
__be32 buf1_size; /* Size of buf1 area in DSP words */
__be32 buf2_base; /* Base addr of 2nd buffer area */
__be32 buf1_buf2_size; /* Size of buf1+buf2 in DSP words */
__be32 buf3_base; /* Base addr of buf3 area */
__be32 buf_total_size; /* Size of buf1+buf2+buf3 in DSP words */
__be32 high_water_mark; /* Point at which IRQ is asserted */
__be32 irq_count; /* bits 1-31 count IRQ assertions */
__be32 irq_ack; /* acked IRQ count, bit 0 enables IRQ */
__be32 next_write_index; /* word index of next write */
__be32 next_read_index; /* word index of next read */
__be32 error; /* error if any */
__be32 oldest_block_index; /* word index of oldest surviving */
__be32 requested_rewind; /* how many blocks rewind was done */
__be32 reserved_space; /* internal */
__be32 min_free; /* min free space since stream start */
__be32 blocks_written[2]; /* total blocks written (64 bit) */
__be32 words_written[2]; /* total words written (64 bit) */
};
struct wm_adsp_compr;
struct wm_adsp_compr_buf {
struct list_head list;
struct wm_adsp *dsp;
struct wm_adsp_compr *compr;
struct wm_adsp_buffer_region *regions;
u32 host_buf_ptr;
u32 error;
u32 irq_count;
int read_index;
int avail;
int host_buf_mem_type;
char *name;
};
struct wm_adsp_compr {
struct list_head list;
struct wm_adsp *dsp;
struct wm_adsp_compr_buf *buf;
struct snd_compr_stream *stream;
struct snd_compressed_buffer size;
u32 *raw_buf;
unsigned int copied_total;
unsigned int sample_rate;
const char *name;
};
#define WM_ADSP_DATA_WORD_SIZE 3
#define WM_ADSP_MIN_FRAGMENTS 1
#define WM_ADSP_MAX_FRAGMENTS 256
#define WM_ADSP_MIN_FRAGMENT_SIZE (64 * WM_ADSP_DATA_WORD_SIZE)
#define WM_ADSP_MAX_FRAGMENT_SIZE (4096 * WM_ADSP_DATA_WORD_SIZE)
#define WM_ADSP_ALG_XM_STRUCT_MAGIC 0x49aec7
#define HOST_BUFFER_FIELD(field) \
(offsetof(struct wm_adsp_buffer, field) / sizeof(__be32))
#define ALG_XM_FIELD(field) \
(offsetof(struct wm_adsp_alg_xm_struct, field) / sizeof(__be32))
#define HOST_BUF_COEFF_SUPPORTED_COMPAT_VER 1
#define HOST_BUF_COEFF_COMPAT_VER_MASK 0xFF00
#define HOST_BUF_COEFF_COMPAT_VER_SHIFT 8
static int wm_adsp_buffer_init(struct wm_adsp *dsp);
static int wm_adsp_buffer_free(struct wm_adsp *dsp);
struct wm_adsp_buffer_region {
unsigned int offset;
unsigned int cumulative_size;
unsigned int mem_type;
unsigned int base_addr;
};
struct wm_adsp_buffer_region_def {
unsigned int mem_type;
unsigned int base_offset;
unsigned int size_offset;
};
static const struct wm_adsp_buffer_region_def default_regions[] = {
{
.mem_type = WMFW_ADSP2_XM,
.base_offset = HOST_BUFFER_FIELD(buf1_base),
.size_offset = HOST_BUFFER_FIELD(buf1_size),
},
{
.mem_type = WMFW_ADSP2_XM,
.base_offset = HOST_BUFFER_FIELD(buf2_base),
.size_offset = HOST_BUFFER_FIELD(buf1_buf2_size),
},
{
.mem_type = WMFW_ADSP2_YM,
.base_offset = HOST_BUFFER_FIELD(buf3_base),
.size_offset = HOST_BUFFER_FIELD(buf_total_size),
},
};
struct wm_adsp_fw_caps {
u32 id;
struct snd_codec_desc desc;
int num_regions;
const struct wm_adsp_buffer_region_def *region_defs;
};
static const struct wm_adsp_fw_caps ctrl_caps[] = {
{
.id = SND_AUDIOCODEC_BESPOKE,
.desc = {
.max_ch = 8,
.sample_rates = { 16000 },
.num_sample_rates = 1,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.num_regions = ARRAY_SIZE(default_regions),
.region_defs = default_regions,
},
};
static const struct wm_adsp_fw_caps trace_caps[] = {
{
.id = SND_AUDIOCODEC_BESPOKE,
.desc = {
.max_ch = 8,
.sample_rates = {
4000, 8000, 11025, 12000, 16000, 22050,
24000, 32000, 44100, 48000, 64000, 88200,
96000, 176400, 192000
},
.num_sample_rates = 15,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.num_regions = ARRAY_SIZE(default_regions),
.region_defs = default_regions,
},
};
static const struct {
const char *file;
int compr_direction;
int num_caps;
const struct wm_adsp_fw_caps *caps;
bool voice_trigger;
} wm_adsp_fw[WM_ADSP_NUM_FW] = {
[WM_ADSP_FW_MBC_VSS] = { .file = "mbc-vss" },
[WM_ADSP_FW_HIFI] = { .file = "hifi" },
[WM_ADSP_FW_TX] = { .file = "tx" },
[WM_ADSP_FW_TX_SPK] = { .file = "tx-spk" },
[WM_ADSP_FW_RX] = { .file = "rx" },
[WM_ADSP_FW_RX_ANC] = { .file = "rx-anc" },
[WM_ADSP_FW_CTRL] = {
.file = "ctrl",
.compr_direction = SND_COMPRESS_CAPTURE,
.num_caps = ARRAY_SIZE(ctrl_caps),
.caps = ctrl_caps,
.voice_trigger = true,
},
[WM_ADSP_FW_ASR] = { .file = "asr" },
[WM_ADSP_FW_TRACE] = {
.file = "trace",
.compr_direction = SND_COMPRESS_CAPTURE,
.num_caps = ARRAY_SIZE(trace_caps),
.caps = trace_caps,
},
[WM_ADSP_FW_SPK_PROT] = { .file = "spk-prot" },
[WM_ADSP_FW_MISC] = { .file = "misc" },
};
struct wm_coeff_ctl_ops {
int (*xget)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
int (*xput)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
};
struct wm_coeff_ctl {
const char *name;
const char *fw_name;
struct wm_adsp_alg_region alg_region;
struct wm_coeff_ctl_ops ops;
struct wm_adsp *dsp;
unsigned int enabled:1;
struct list_head list;
void *cache;
unsigned int offset;
size_t len;
unsigned int set:1;
struct soc_bytes_ext bytes_ext;
unsigned int flags;
unsigned int type;
};
static const char *wm_adsp_mem_region_name(unsigned int type)
{
switch (type) {
case WMFW_ADSP1_PM:
return "PM";
case WMFW_HALO_PM_PACKED:
return "PM_PACKED";
case WMFW_ADSP1_DM:
return "DM";
case WMFW_ADSP2_XM:
return "XM";
case WMFW_HALO_XM_PACKED:
return "XM_PACKED";
case WMFW_ADSP2_YM:
return "YM";
case WMFW_HALO_YM_PACKED:
return "YM_PACKED";
case WMFW_ADSP1_ZM:
return "ZM";
default:
return NULL;
}
}
#ifdef CONFIG_DEBUG_FS
static void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->wmfw_file_name);
dsp->wmfw_file_name = tmp;
}
static void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->bin_file_name);
dsp->bin_file_name = tmp;
}
static void wm_adsp_debugfs_clear(struct wm_adsp *dsp)
{
kfree(dsp->wmfw_file_name);
kfree(dsp->bin_file_name);
dsp->wmfw_file_name = NULL;
dsp->bin_file_name = NULL;
}
static ssize_t wm_adsp_debugfs_wmfw_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct wm_adsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->wmfw_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->wmfw_file_name,
strlen(dsp->wmfw_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static ssize_t wm_adsp_debugfs_bin_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct wm_adsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->bin_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->bin_file_name,
strlen(dsp->bin_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static const struct {
const char *name;
const struct file_operations fops;
} wm_adsp_debugfs_fops[] = {
{
.name = "wmfw_file_name",
.fops = {
.open = simple_open,
.read = wm_adsp_debugfs_wmfw_read,
},
},
{
.name = "bin_file_name",
.fops = {
.open = simple_open,
.read = wm_adsp_debugfs_bin_read,
},
},
};
static void wm_adsp2_init_debugfs(struct wm_adsp *dsp,
struct snd_soc_component *component)
{
struct dentry *root = NULL;
int i;
root = debugfs_create_dir(dsp->name, component->debugfs_root);
debugfs_create_bool("booted", 0444, root, &dsp->booted);
debugfs_create_bool("running", 0444, root, &dsp->running);
debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
for (i = 0; i < ARRAY_SIZE(wm_adsp_debugfs_fops); ++i)
debugfs_create_file(wm_adsp_debugfs_fops[i].name, 0444, root,
dsp, &wm_adsp_debugfs_fops[i].fops);
dsp->debugfs_root = root;
}
static void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp)
{
wm_adsp_debugfs_clear(dsp);
debugfs_remove_recursive(dsp->debugfs_root);
}
#else
static inline void wm_adsp2_init_debugfs(struct wm_adsp *dsp,
struct snd_soc_component *component)
{
}
static inline void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp)
{
}
static inline void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp,
const char *s)
{
}
static inline void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp,
const char *s)
{
}
static inline void wm_adsp_debugfs_clear(struct wm_adsp *dsp)
{
}
#endif
int wm_adsp_fw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct wm_adsp *dsp = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = dsp[e->shift_l].fw;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_fw_get);
int wm_adsp_fw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct wm_adsp *dsp = snd_soc_component_get_drvdata(component);
int ret = 1;
if (ucontrol->value.enumerated.item[0] == dsp[e->shift_l].fw)
return 0;
if (ucontrol->value.enumerated.item[0] >= WM_ADSP_NUM_FW)
return -EINVAL;
mutex_lock(&dsp[e->shift_l].pwr_lock);
if (dsp[e->shift_l].booted || !list_empty(&dsp[e->shift_l].compr_list))
ret = -EBUSY;
else
dsp[e->shift_l].fw = ucontrol->value.enumerated.item[0];
mutex_unlock(&dsp[e->shift_l].pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_fw_put);
const struct soc_enum wm_adsp_fw_enum[] = {
SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 4, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 5, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 6, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
};
EXPORT_SYMBOL_GPL(wm_adsp_fw_enum);
static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp,
int type)
{
int i;
for (i = 0; i < dsp->num_mems; i++)
if (dsp->mem[i].type == type)
return &dsp->mem[i];
return NULL;
}
static unsigned int wm_adsp_region_to_reg(struct wm_adsp_region const *mem,
unsigned int offset)
{
switch (mem->type) {
case WMFW_ADSP1_PM:
return mem->base + (offset * 3);
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
return mem->base + (offset * 2);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static unsigned int wm_halo_region_to_reg(struct wm_adsp_region const *mem,
unsigned int offset)
{
switch (mem->type) {
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
return mem->base + (offset * 4);
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
return (mem->base + (offset * 3)) & ~0x3;
case WMFW_HALO_PM_PACKED:
return mem->base + (offset * 5);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static void wm_adsp_read_fw_status(struct wm_adsp *dsp,
int noffs, unsigned int *offs)
{
unsigned int i;
int ret;
for (i = 0; i < noffs; ++i) {
ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
if (ret) {
adsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
return;
}
}
}
static void wm_adsp2_show_fw_status(struct wm_adsp *dsp)
{
unsigned int offs[] = {
ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
};
wm_adsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0], offs[1], offs[2], offs[3]);
}
static void wm_adsp2v2_show_fw_status(struct wm_adsp *dsp)
{
unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
wm_adsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0] & 0xFFFF, offs[0] >> 16,
offs[1] & 0xFFFF, offs[1] >> 16);
}
static void wm_halo_show_fw_status(struct wm_adsp *dsp)
{
unsigned int offs[] = {
HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
};
wm_adsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0], offs[1], offs[2], offs[3]);
}
static inline struct wm_coeff_ctl *bytes_ext_to_ctl(struct soc_bytes_ext *ext)
{
return container_of(ext, struct wm_coeff_ctl, bytes_ext);
}
static int wm_coeff_base_reg(struct wm_coeff_ctl *ctl, unsigned int *reg)
{
const struct wm_adsp_alg_region *alg_region = &ctl->alg_region;
struct wm_adsp *dsp = ctl->dsp;
const struct wm_adsp_region *mem;
mem = wm_adsp_find_region(dsp, alg_region->type);
if (!mem) {
adsp_err(dsp, "No base for region %x\n",
alg_region->type);
return -EINVAL;
}
*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset);
return 0;
}
static int wm_coeff_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
switch (ctl->type) {
case WMFW_CTL_TYPE_ACKED:
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->value.integer.min = WM_ADSP_ACKED_CTL_MIN_VALUE;
uinfo->value.integer.max = WM_ADSP_ACKED_CTL_MAX_VALUE;
uinfo->value.integer.step = 1;
uinfo->count = 1;
break;
default:
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = ctl->len;
break;
}
return 0;
}
static int wm_coeff_write_acked_control(struct wm_coeff_ctl *ctl,
unsigned int event_id)
{
struct wm_adsp *dsp = ctl->dsp;
u32 val = cpu_to_be32(event_id);
unsigned int reg;
int i, ret;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
adsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
event_id, ctl->alg_region.alg,
wm_adsp_mem_region_name(ctl->alg_region.type), ctl->offset);
ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
adsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
return ret;
}
/*
* Poll for ack, we initially poll at ~1ms intervals for firmwares
* that respond quickly, then go to ~10ms polls. A firmware is unlikely
* to ack instantly so we do the first 1ms delay before reading the
* control to avoid a pointless bus transaction
*/
for (i = 0; i < WM_ADSP_ACKED_CTL_TIMEOUT_MS;) {
switch (i) {
case 0 ... WM_ADSP_ACKED_CTL_N_QUICKPOLLS - 1:
usleep_range(1000, 2000);
i++;
break;
default:
usleep_range(10000, 20000);
i += 10;
break;
}
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
adsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
return ret;
}
if (val == 0) {
adsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
return 0;
}
}
adsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
reg, ctl->alg_region.alg,
wm_adsp_mem_region_name(ctl->alg_region.type),
ctl->offset);
return -ETIMEDOUT;
}
static int wm_coeff_write_control(struct wm_coeff_ctl *ctl,
const void *buf, size_t len)
{
struct wm_adsp *dsp = ctl->dsp;
void *scratch;
int ret;
unsigned int reg;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_write(dsp->regmap, reg, scratch,
len);
if (ret) {
adsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
len, reg, ret);
kfree(scratch);
return ret;
}
adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
kfree(scratch);
return 0;
}
static int wm_coeff_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
char *p = ucontrol->value.bytes.data;
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
ret = -EPERM;
else
memcpy(ctl->cache, p, ctl->len);
ctl->set = 1;
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_write_control(ctl, p, ctl->len);
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_tlv_put(struct snd_kcontrol *kctl,
const unsigned int __user *bytes, unsigned int size)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (copy_from_user(ctl->cache, bytes, size)) {
ret = -EFAULT;
} else {
ctl->set = 1;
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_write_control(ctl, ctl->cache, size);
else if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
ret = -EPERM;
}
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_put_acked(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
unsigned int val = ucontrol->value.integer.value[0];
int ret;
if (val == 0)
return 0; /* 0 means no event */
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_write_acked_control(ctl, val);
else
ret = -EPERM;
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_read_control(struct wm_coeff_ctl *ctl,
void *buf, size_t len)
{
struct wm_adsp *dsp = ctl->dsp;
void *scratch;
int ret;
unsigned int reg;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
if (ret) {
adsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
len, reg, ret);
kfree(scratch);
return ret;
}
adsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
memcpy(buf, scratch, len);
kfree(scratch);
return 0;
}
static int wm_coeff_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
char *p = ucontrol->value.bytes.data;
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, p, ctl->len);
else
ret = -EPERM;
} else {
if (!ctl->flags && ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, ctl->cache, ctl->len);
memcpy(p, ctl->cache, ctl->len);
}
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_tlv_get(struct snd_kcontrol *kctl,
unsigned int __user *bytes, unsigned int size)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, ctl->cache, size);
else
ret = -EPERM;
} else {
if (!ctl->flags && ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, ctl->cache, size);
}
if (!ret && copy_to_user(bytes, ctl->cache, size))
ret = -EFAULT;
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_get_acked(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
/*
* Although it's not useful to read an acked control, we must satisfy
* user-side assumptions that all controls are readable and that a
* write of the same value should be filtered out (it's valid to send
* the same event number again to the firmware). We therefore return 0,
* meaning "no event" so valid event numbers will always be a change
*/
ucontrol->value.integer.value[0] = 0;
return 0;
}
struct wmfw_ctl_work {
struct wm_adsp *dsp;
struct wm_coeff_ctl *ctl;
struct work_struct work;
};
static unsigned int wmfw_convert_flags(unsigned int in, unsigned int len)
{
unsigned int out, rd, wr, vol;
if (len > ADSP_MAX_STD_CTRL_SIZE) {
rd = SNDRV_CTL_ELEM_ACCESS_TLV_READ;
wr = SNDRV_CTL_ELEM_ACCESS_TLV_WRITE;
vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE;
out = SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
} else {
rd = SNDRV_CTL_ELEM_ACCESS_READ;
wr = SNDRV_CTL_ELEM_ACCESS_WRITE;
vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE;
out = 0;
}
if (in) {
out |= rd;
if (in & WMFW_CTL_FLAG_WRITEABLE)
out |= wr;
if (in & WMFW_CTL_FLAG_VOLATILE)
out |= vol;
} else {
out |= rd | wr | vol;
}
return out;
}
static int wmfw_add_ctl(struct wm_adsp *dsp, struct wm_coeff_ctl *ctl)
{
struct snd_kcontrol_new *kcontrol;
int ret;
if (!ctl || !ctl->name)
return -EINVAL;
kcontrol = kzalloc(sizeof(*kcontrol), GFP_KERNEL);
if (!kcontrol)
return -ENOMEM;
kcontrol->name = ctl->name;
kcontrol->info = wm_coeff_info;
kcontrol->iface = SNDRV_CTL_ELEM_IFACE_MIXER;
kcontrol->tlv.c = snd_soc_bytes_tlv_callback;
kcontrol->private_value = (unsigned long)&ctl->bytes_ext;
kcontrol->access = wmfw_convert_flags(ctl->flags, ctl->len);
switch (ctl->type) {
case WMFW_CTL_TYPE_ACKED:
kcontrol->get = wm_coeff_get_acked;
kcontrol->put = wm_coeff_put_acked;
break;
default:
if (kcontrol->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
ctl->bytes_ext.max = ctl->len;
ctl->bytes_ext.get = wm_coeff_tlv_get;
ctl->bytes_ext.put = wm_coeff_tlv_put;
} else {
kcontrol->get = wm_coeff_get;
kcontrol->put = wm_coeff_put;
}
break;
}
ret = snd_soc_add_component_controls(dsp->component, kcontrol, 1);
if (ret < 0)
goto err_kcontrol;
kfree(kcontrol);
return 0;
err_kcontrol:
kfree(kcontrol);
return ret;
}
static int wm_coeff_init_control_caches(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled || ctl->set)
continue;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
continue;
/*
* For readable controls populate the cache from the DSP memory.
* For non-readable controls the cache was zero-filled when
* created so we don't need to do anything.
*/
if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
ret = wm_coeff_read_control(ctl, ctl->cache, ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static int wm_coeff_sync_controls(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled)
continue;
if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
ret = wm_coeff_write_control(ctl, ctl->cache, ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static void wm_adsp_signal_event_controls(struct wm_adsp *dsp,
unsigned int event)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
continue;
if (!ctl->enabled)
continue;
ret = wm_coeff_write_acked_control(ctl, event);
if (ret)
adsp_warn(dsp,
"Failed to send 0x%x event to alg 0x%x (%d)\n",
event, ctl->alg_region.alg, ret);
}
}
static void wm_adsp_ctl_work(struct work_struct *work)
{
struct wmfw_ctl_work *ctl_work = container_of(work,
struct wmfw_ctl_work,
work);
wmfw_add_ctl(ctl_work->dsp, ctl_work->ctl);
kfree(ctl_work);
}
static void wm_adsp_free_ctl_blk(struct wm_coeff_ctl *ctl)
{
kfree(ctl->cache);
kfree(ctl->name);
kfree(ctl);
}
static int wm_adsp_create_control(struct wm_adsp *dsp,
const struct wm_adsp_alg_region *alg_region,
unsigned int offset, unsigned int len,
const char *subname, unsigned int subname_len,
unsigned int flags, unsigned int type)
{
struct wm_coeff_ctl *ctl;
struct wmfw_ctl_work *ctl_work;
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
const char *region_name;
int ret;
region_name = wm_adsp_mem_region_name(alg_region->type);
if (!region_name) {
adsp_err(dsp, "Unknown region type: %d\n", alg_region->type);
return -EINVAL;
}
switch (dsp->fw_ver) {
case 0:
case 1:
snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN, "%s %s %x",
dsp->name, region_name, alg_region->alg);
subname = NULL; /* don't append subname */
break;
case 2:
ret = snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN,
"%s%c %.12s %x", dsp->name, *region_name,
wm_adsp_fw_text[dsp->fw], alg_region->alg);
break;
default:
ret = snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN,
"%s %.12s %x", dsp->name,
wm_adsp_fw_text[dsp->fw], alg_region->alg);
break;
}
if (subname) {
int avail = SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret - 2;
int skip = 0;
if (dsp->component->name_prefix)
avail -= strlen(dsp->component->name_prefix) + 1;
/* Truncate the subname from the start if it is too long */
if (subname_len > avail)
skip = subname_len - avail;
snprintf(name + ret, SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret,
" %.*s", subname_len - skip, subname + skip);
}
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!strcmp(ctl->name, name)) {
if (!ctl->enabled)
ctl->enabled = 1;
return 0;
}
}
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return -ENOMEM;
ctl->fw_name = wm_adsp_fw_text[dsp->fw];
ctl->alg_region = *alg_region;
ctl->name = kmemdup(name, strlen(name) + 1, GFP_KERNEL);
if (!ctl->name) {
ret = -ENOMEM;
goto err_ctl;
}
ctl->enabled = 1;
ctl->set = 0;
ctl->ops.xget = wm_coeff_get;
ctl->ops.xput = wm_coeff_put;
ctl->dsp = dsp;
ctl->flags = flags;
ctl->type = type;
ctl->offset = offset;
ctl->len = len;
ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
if (!ctl->cache) {
ret = -ENOMEM;
goto err_ctl_name;
}
list_add(&ctl->list, &dsp->ctl_list);
if (flags & WMFW_CTL_FLAG_SYS)
return 0;
ctl_work = kzalloc(sizeof(*ctl_work), GFP_KERNEL);
if (!ctl_work) {
ret = -ENOMEM;
goto err_list_del;
}
ctl_work->dsp = dsp;
ctl_work->ctl = ctl;
INIT_WORK(&ctl_work->work, wm_adsp_ctl_work);
schedule_work(&ctl_work->work);
return 0;
err_list_del:
list_del(&ctl->list);
kfree(ctl->cache);
err_ctl_name:
kfree(ctl->name);
err_ctl:
kfree(ctl);
return ret;
}
struct wm_coeff_parsed_alg {
int id;
const u8 *name;
int name_len;
int ncoeff;
};
struct wm_coeff_parsed_coeff {
int offset;
int mem_type;
const u8 *name;
int name_len;
int ctl_type;
int flags;
int len;
};
static int wm_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
{
int length;
switch (bytes) {
case 1:
length = **pos;
break;
case 2:
length = le16_to_cpu(*((__le16 *)*pos));
break;
default:
return 0;
}
if (str)
*str = *pos + bytes;
*pos += ((length + bytes) + 3) & ~0x03;
return length;
}
static int wm_coeff_parse_int(int bytes, const u8 **pos)
{
int val = 0;
switch (bytes) {
case 2:
val = le16_to_cpu(*((__le16 *)*pos));
break;
case 4:
val = le32_to_cpu(*((__le32 *)*pos));
break;
default:
break;
}
*pos += bytes;
return val;
}
static inline void wm_coeff_parse_alg(struct wm_adsp *dsp, const u8 **data,
struct wm_coeff_parsed_alg *blk)
{
const struct wmfw_adsp_alg_data *raw;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_alg_data *)*data;
*data = raw->data;
blk->id = le32_to_cpu(raw->id);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ncoeff = le32_to_cpu(raw->ncoeff);
break;
default:
blk->id = wm_coeff_parse_int(sizeof(raw->id), data);
blk->name_len = wm_coeff_parse_string(sizeof(u8), data,
&blk->name);
wm_coeff_parse_string(sizeof(u16), data, NULL);
blk->ncoeff = wm_coeff_parse_int(sizeof(raw->ncoeff), data);
break;
}
adsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
adsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
adsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
}
static inline void wm_coeff_parse_coeff(struct wm_adsp *dsp, const u8 **data,
struct wm_coeff_parsed_coeff *blk)
{
const struct wmfw_adsp_coeff_data *raw;
const u8 *tmp;
int length;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_coeff_data *)*data;
*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
blk->offset = le16_to_cpu(raw->hdr.offset);
blk->mem_type = le16_to_cpu(raw->hdr.type);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ctl_type = le16_to_cpu(raw->ctl_type);
blk->flags = le16_to_cpu(raw->flags);
blk->len = le32_to_cpu(raw->len);
break;
default:
tmp = *data;
blk->offset = wm_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
blk->mem_type = wm_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
length = wm_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
blk->name_len = wm_coeff_parse_string(sizeof(u8), &tmp,
&blk->name);
wm_coeff_parse_string(sizeof(u8), &tmp, NULL);
wm_coeff_parse_string(sizeof(u16), &tmp, NULL);
blk->ctl_type = wm_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
blk->flags = wm_coeff_parse_int(sizeof(raw->flags), &tmp);
blk->len = wm_coeff_parse_int(sizeof(raw->len), &tmp);
*data = *data + sizeof(raw->hdr) + length;
break;
}
adsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
adsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
adsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
adsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
adsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
adsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
}
static int wm_adsp_check_coeff_flags(struct wm_adsp *dsp,
const struct wm_coeff_parsed_coeff *coeff_blk,
unsigned int f_required,
unsigned int f_illegal)
{
if ((coeff_blk->flags & f_illegal) ||
((coeff_blk->flags & f_required) != f_required)) {
adsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
coeff_blk->flags, coeff_blk->ctl_type);
return -EINVAL;
}
return 0;
}
static int wm_adsp_parse_coeff(struct wm_adsp *dsp,
const struct wmfw_region *region)
{
struct wm_adsp_alg_region alg_region = {};
struct wm_coeff_parsed_alg alg_blk;
struct wm_coeff_parsed_coeff coeff_blk;
const u8 *data = region->data;
int i, ret;
wm_coeff_parse_alg(dsp, &data, &alg_blk);
for (i = 0; i < alg_blk.ncoeff; i++) {
wm_coeff_parse_coeff(dsp, &data, &coeff_blk);
switch (coeff_blk.ctl_type) {
case SNDRV_CTL_ELEM_TYPE_BYTES:
break;
case WMFW_CTL_TYPE_ACKED:
if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
continue; /* ignore */
ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOSTEVENT:
ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOST_BUFFER:
ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
default:
adsp_err(dsp, "Unknown control type: %d\n",
coeff_blk.ctl_type);
return -EINVAL;
}
alg_region.type = coeff_blk.mem_type;
alg_region.alg = alg_blk.id;
ret = wm_adsp_create_control(dsp, &alg_region,
coeff_blk.offset,
coeff_blk.len,
coeff_blk.name,
coeff_blk.name_len,
coeff_blk.flags,
coeff_blk.ctl_type);
if (ret < 0)
adsp_err(dsp, "Failed to create control: %.*s, %d\n",
coeff_blk.name_len, coeff_blk.name, ret);
}
return 0;
}
static unsigned int wm_adsp1_parse_sizes(struct wm_adsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware)
{
const struct wmfw_adsp1_sizes *adsp1_sizes;
adsp1_sizes = (void *)&firmware->data[pos];
adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
le32_to_cpu(adsp1_sizes->zm));
return pos + sizeof(*adsp1_sizes);
}
static unsigned int wm_adsp2_parse_sizes(struct wm_adsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware)
{
const struct wmfw_adsp2_sizes *adsp2_sizes;
adsp2_sizes = (void *)&firmware->data[pos];
adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
return pos + sizeof(*adsp2_sizes);
}
static bool wm_adsp_validate_version(struct wm_adsp *dsp, unsigned int version)
{
switch (version) {
case 0:
adsp_warn(dsp, "Deprecated file format %d\n", version);
return true;
case 1:
case 2:
return true;
default:
return false;
}
}
static bool wm_halo_validate_version(struct wm_adsp *dsp, unsigned int version)
{
switch (version) {
case 3:
return true;
default:
return false;
}
}
static int wm_adsp_load(struct wm_adsp *dsp)
{
LIST_HEAD(buf_list);
const struct firmware *firmware;
struct regmap *regmap = dsp->regmap;
unsigned int pos = 0;
const struct wmfw_header *header;
const struct wmfw_adsp1_sizes *adsp1_sizes;
const struct wmfw_footer *footer;
const struct wmfw_region *region;
const struct wm_adsp_region *mem;
const char *region_name;
char *file, *text = NULL;
struct wm_adsp_buf *buf;
unsigned int reg;
int regions = 0;
int ret, offset, type;
file = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (file == NULL)
return -ENOMEM;
snprintf(file, PAGE_SIZE, "%s-%s-%s.wmfw", dsp->part, dsp->fwf_name,
wm_adsp_fw[dsp->fw].file);
file[PAGE_SIZE - 1] = '\0';
ret = request_firmware(&firmware, file, dsp->dev);
if (ret != 0) {
adsp_err(dsp, "Failed to request '%s'\n", file);
goto out;
}
ret = -EINVAL;
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
if (pos >= firmware->size) {
adsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
header = (void *)&firmware->data[0];
if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
adsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
if (!dsp->ops->validate_version(dsp, header->ver)) {
adsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
adsp_info(dsp, "Firmware version: %d\n", header->ver);
dsp->fw_ver = header->ver;
if (header->core != dsp->type) {
adsp_err(dsp, "%s: invalid core %d != %d\n",
file, header->core, dsp->type);
goto out_fw;
}
pos = sizeof(*header);
pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
footer = (void *)&firmware->data[pos];
pos += sizeof(*footer);
if (le32_to_cpu(header->len) != pos) {
adsp_err(dsp, "%s: unexpected header length %d\n",
file, le32_to_cpu(header->len));
goto out_fw;
}
adsp_dbg(dsp, "%s: timestamp %llu\n", file,
le64_to_cpu(footer->timestamp));
while (pos < firmware->size &&
sizeof(*region) < firmware->size - pos) {
region = (void *)&(firmware->data[pos]);
region_name = "Unknown";
reg = 0;
text = NULL;
offset = le32_to_cpu(region->offset) & 0xffffff;
type = be32_to_cpu(region->type) & 0xff;
switch (type) {
case WMFW_NAME_TEXT:
region_name = "Firmware name";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ALGORITHM_DATA:
region_name = "Algorithm";
ret = wm_adsp_parse_coeff(dsp, region);
if (ret != 0)
goto out_fw;
break;
case WMFW_INFO_TEXT:
region_name = "Information";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ABSOLUTE:
region_name = "Absolute";
reg = offset;
break;
case WMFW_ADSP1_PM:
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
case WMFW_HALO_PM_PACKED:
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No region of type: %x\n", type);
ret = -EINVAL;
goto out_fw;
}
region_name = wm_adsp_mem_region_name(type);
reg = dsp->ops->region_to_reg(mem, offset);
break;
default:
adsp_warn(dsp,
"%s.%d: Unknown region type %x at %d(%x)\n",
file, regions, type, pos, pos);
break;
}
adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
regions, le32_to_cpu(region->len), offset,
region_name);
if (le32_to_cpu(region->len) >
firmware->size - pos - sizeof(*region)) {
adsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, regions, region_name,
le32_to_cpu(region->len), firmware->size);
ret = -EINVAL;
goto out_fw;
}
if (text) {
memcpy(text, region->data, le32_to_cpu(region->len));
adsp_info(dsp, "%s: %s\n", file, text);
kfree(text);
text = NULL;
}
if (reg) {
buf = wm_adsp_buf_alloc(region->data,
le32_to_cpu(region->len),
&buf_list);
if (!buf) {
adsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(region->len));
if (ret != 0) {
adsp_err(dsp,
"%s.%d: Failed to write %d bytes at %d in %s: %d\n",
file, regions,
le32_to_cpu(region->len), offset,
region_name, ret);
goto out_fw;
}
}
pos += le32_to_cpu(region->len) + sizeof(*region);
regions++;
}
ret = regmap_async_complete(regmap);
if (ret != 0) {
adsp_err(dsp, "Failed to complete async write: %d\n", ret);
goto out_fw;
}
if (pos > firmware->size)
adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, regions, pos - firmware->size);
wm_adsp_debugfs_save_wmfwname(dsp, file);
out_fw:
regmap_async_complete(regmap);
wm_adsp_buf_free(&buf_list);
release_firmware(firmware);
kfree(text);
out:
kfree(file);
return ret;
}
static void wm_adsp_ctl_fixup_base(struct wm_adsp *dsp,
const struct wm_adsp_alg_region *alg_region)
{
struct wm_coeff_ctl *ctl;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->fw_name == wm_adsp_fw_text[dsp->fw] &&
alg_region->alg == ctl->alg_region.alg &&
alg_region->type == ctl->alg_region.type) {
ctl->alg_region.base = alg_region->base;
}
}
}
static void *wm_adsp_read_algs(struct wm_adsp *dsp, size_t n_algs,
const struct wm_adsp_region *mem,
unsigned int pos, unsigned int len)
{
void *alg;
unsigned int reg;
int ret;
__be32 val;
if (n_algs == 0) {
adsp_err(dsp, "No algorithms\n");
return ERR_PTR(-EINVAL);
}
if (n_algs > 1024) {
adsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
return ERR_PTR(-EINVAL);
}
/* Read the terminator first to validate the length */
reg = dsp->ops->region_to_reg(mem, pos + len);
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm list end: %d\n",
ret);
return ERR_PTR(ret);
}
if (be32_to_cpu(val) != 0xbedead)
adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
reg, be32_to_cpu(val));
/* Convert length from DSP words to bytes */
len *= sizeof(u32);
alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
if (!alg)
return ERR_PTR(-ENOMEM);
reg = dsp->ops->region_to_reg(mem, pos);
ret = regmap_raw_read(dsp->regmap, reg, alg, len);
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
kfree(alg);
return ERR_PTR(ret);
}
return alg;
}
static struct wm_adsp_alg_region *
wm_adsp_find_alg_region(struct wm_adsp *dsp, int type, unsigned int id)
{
struct wm_adsp_alg_region *alg_region;
list_for_each_entry(alg_region, &dsp->alg_regions, list) {
if (id == alg_region->alg && type == alg_region->type)
return alg_region;
}
return NULL;
}
static struct wm_adsp_alg_region *wm_adsp_create_region(struct wm_adsp *dsp,
int type, __be32 id,
__be32 base)
{
struct wm_adsp_alg_region *alg_region;
alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
if (!alg_region)
return ERR_PTR(-ENOMEM);
alg_region->type = type;
alg_region->alg = be32_to_cpu(id);
alg_region->base = be32_to_cpu(base);
list_add_tail(&alg_region->list, &dsp->alg_regions);
if (dsp->fw_ver > 0)
wm_adsp_ctl_fixup_base(dsp, alg_region);
return alg_region;
}
static void wm_adsp_free_alg_regions(struct wm_adsp *dsp)
{
struct wm_adsp_alg_region *alg_region;
while (!list_empty(&dsp->alg_regions)) {
alg_region = list_first_entry(&dsp->alg_regions,
struct wm_adsp_alg_region,
list);
list_del(&alg_region->list);
kfree(alg_region);
}
}
static void wmfw_parse_id_header(struct wm_adsp *dsp,
struct wmfw_id_hdr *fw, int nalgs)
{
dsp->fw_id = be32_to_cpu(fw->id);
dsp->fw_id_version = be32_to_cpu(fw->ver);
adsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
nalgs);
}
static void wmfw_v3_parse_id_header(struct wm_adsp *dsp,
struct wmfw_v3_id_hdr *fw, int nalgs)
{
dsp->fw_id = be32_to_cpu(fw->id);
dsp->fw_id_version = be32_to_cpu(fw->ver);
dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
adsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
dsp->fw_id, dsp->fw_vendor_id,
(dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
nalgs);
}
static int wm_adsp_create_regions(struct wm_adsp *dsp, __be32 id, int nregions,
int *type, __be32 *base)
{
struct wm_adsp_alg_region *alg_region;
int i;
for (i = 0; i < nregions; i++) {
alg_region = wm_adsp_create_region(dsp, type[i], id, base[i]);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
}
return 0;
}
static int wm_adsp1_setup_algs(struct wm_adsp *dsp)
{
struct wmfw_adsp1_id_hdr adsp1_id;
struct wmfw_adsp1_alg_hdr *adsp1_alg;
struct wm_adsp_alg_region *alg_region;
const struct wm_adsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
sizeof(adsp1_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(adsp1_id.n_algs);
wmfw_parse_id_header(dsp, &adsp1_id.fw, n_algs);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_id.fw.id, adsp1_id.zm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_id.fw.id, adsp1_id.dm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
/* Calculate offset and length in DSP words */
pos = sizeof(adsp1_id) / sizeof(u32);
len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
adsp1_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp1_alg))
return PTR_ERR(adsp1_alg);
for (i = 0; i < n_algs; i++) {
adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
i, be32_to_cpu(adsp1_alg[i].alg.id),
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp1_alg[i].dm),
be32_to_cpu(adsp1_alg[i].zm));
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_alg[i].alg.id,
adsp1_alg[i].dm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].dm);
len -= be32_to_cpu(adsp1_alg[i].dm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region DM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_alg[i].alg.id,
adsp1_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].zm);
len -= be32_to_cpu(adsp1_alg[i].zm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
}
out:
kfree(adsp1_alg);
return ret;
}
static int wm_adsp2_setup_algs(struct wm_adsp *dsp)
{
struct wmfw_adsp2_id_hdr adsp2_id;
struct wmfw_adsp2_alg_hdr *adsp2_alg;
struct wm_adsp_alg_region *alg_region;
const struct wm_adsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
sizeof(adsp2_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(adsp2_id.n_algs);
wmfw_parse_id_header(dsp, &adsp2_id.fw, n_algs);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_id.fw.id, adsp2_id.xm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_id.fw.id, adsp2_id.ym);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_id.fw.id, adsp2_id.zm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
/* Calculate offset and length in DSP words */
pos = sizeof(adsp2_id) / sizeof(u32);
len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
adsp2_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp2_alg))
return PTR_ERR(adsp2_alg);
for (i = 0; i < n_algs; i++) {
adsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
i, be32_to_cpu(adsp2_alg[i].alg.id),
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp2_alg[i].xm),
be32_to_cpu(adsp2_alg[i].ym),
be32_to_cpu(adsp2_alg[i].zm));
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_alg[i].alg.id,
adsp2_alg[i].xm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].xm);
len -= be32_to_cpu(adsp2_alg[i].xm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region XM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_alg[i].alg.id,
adsp2_alg[i].ym);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].ym);
len -= be32_to_cpu(adsp2_alg[i].ym);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region YM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_alg[i].alg.id,
adsp2_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].zm);
len -= be32_to_cpu(adsp2_alg[i].zm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
}
out:
kfree(adsp2_alg);
return ret;
}
static int wm_halo_create_regions(struct wm_adsp *dsp, __be32 id,
__be32 xm_base, __be32 ym_base)
{
int types[] = {
WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
};
__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
return wm_adsp_create_regions(dsp, id, ARRAY_SIZE(types), types, bases);
}
static int wm_halo_setup_algs(struct wm_adsp *dsp)
{
struct wmfw_halo_id_hdr halo_id;
struct wmfw_halo_alg_hdr *halo_alg;
const struct wm_adsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
sizeof(halo_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(halo_id.n_algs);
wmfw_v3_parse_id_header(dsp, &halo_id.fw, n_algs);
ret = wm_halo_create_regions(dsp, halo_id.fw.id,
halo_id.xm_base, halo_id.ym_base);
if (ret)
return ret;
/* Calculate offset and length in DSP words */
pos = sizeof(halo_id) / sizeof(u32);
len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
halo_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(halo_alg))
return PTR_ERR(halo_alg);
for (i = 0; i < n_algs; i++) {
adsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
i, be32_to_cpu(halo_alg[i].alg.id),
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
be32_to_cpu(halo_alg[i].xm_base),
be32_to_cpu(halo_alg[i].ym_base));
ret = wm_halo_create_regions(dsp, halo_alg[i].alg.id,
halo_alg[i].xm_base,
halo_alg[i].ym_base);
if (ret)
goto out;
}
out:
kfree(halo_alg);
return ret;
}
static int wm_adsp_load_coeff(struct wm_adsp *dsp)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
struct wmfw_coeff_hdr *hdr;
struct wmfw_coeff_item *blk;
const struct firmware *firmware;
const struct wm_adsp_region *mem;
struct wm_adsp_alg_region *alg_region;
const char *region_name;
int ret, pos, blocks, type, offset, reg;
char *file;
struct wm_adsp_buf *buf;
file = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (file == NULL)
return -ENOMEM;
snprintf(file, PAGE_SIZE, "%s-%s-%s.bin", dsp->part, dsp->fwf_name,
wm_adsp_fw[dsp->fw].file);
file[PAGE_SIZE - 1] = '\0';
ret = request_firmware(&firmware, file, dsp->dev);
if (ret != 0) {
adsp_warn(dsp, "Failed to request '%s'\n", file);
ret = 0;
goto out;
}
ret = -EINVAL;
if (sizeof(*hdr) >= firmware->size) {
adsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
hdr = (void *)&firmware->data[0];
if (memcmp(hdr->magic, "WMDR", 4) != 0) {
adsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
switch (be32_to_cpu(hdr->rev) & 0xff) {
case 1:
break;
default:
adsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
file, be32_to_cpu(hdr->rev) & 0xff);
ret = -EINVAL;
goto out_fw;
}
adsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
(le32_to_cpu(hdr->ver) >> 16) & 0xff,
(le32_to_cpu(hdr->ver) >> 8) & 0xff,
le32_to_cpu(hdr->ver) & 0xff);
pos = le32_to_cpu(hdr->len);
blocks = 0;
while (pos < firmware->size &&
sizeof(*blk) < firmware->size - pos) {
blk = (void *)(&firmware->data[pos]);
type = le16_to_cpu(blk->type);
offset = le16_to_cpu(blk->offset);
adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
file, blocks, le32_to_cpu(blk->id),
(le32_to_cpu(blk->ver) >> 16) & 0xff,
(le32_to_cpu(blk->ver) >> 8) & 0xff,
le32_to_cpu(blk->ver) & 0xff);
adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
file, blocks, le32_to_cpu(blk->len), offset, type);
reg = 0;
region_name = "Unknown";
switch (type) {
case (WMFW_NAME_TEXT << 8):
case (WMFW_INFO_TEXT << 8):
break;
case (WMFW_ABSOLUTE << 8):
/*
* Old files may use this for global
* coefficients.
*/
if (le32_to_cpu(blk->id) == dsp->fw_id &&
offset == 0) {
region_name = "global coefficients";
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No ZM\n");
break;
}
reg = dsp->ops->region_to_reg(mem, 0);
} else {
region_name = "register";
reg = offset;
}
break;
case WMFW_ADSP1_DM:
case WMFW_ADSP1_ZM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
case WMFW_HALO_PM_PACKED:
adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
file, blocks, le32_to_cpu(blk->len),
type, le32_to_cpu(blk->id));
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No base for region %x\n", type);
break;
}
alg_region = wm_adsp_find_alg_region(dsp, type,
le32_to_cpu(blk->id));
if (alg_region) {
reg = alg_region->base;
reg = dsp->ops->region_to_reg(mem, reg);
reg += offset;
} else {
adsp_err(dsp, "No %x for algorithm %x\n",
type, le32_to_cpu(blk->id));
}
break;
default:
adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
file, blocks, type, pos);
break;
}
if (reg) {
if (le32_to_cpu(blk->len) >
firmware->size - pos - sizeof(*blk)) {
adsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, blocks, region_name,
le32_to_cpu(blk->len),
firmware->size);
ret = -EINVAL;
goto out_fw;
}
buf = wm_adsp_buf_alloc(blk->data,
le32_to_cpu(blk->len),
&buf_list);
if (!buf) {
adsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
file, blocks, le32_to_cpu(blk->len),
reg);
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(blk->len));
if (ret != 0) {
adsp_err(dsp,
"%s.%d: Failed to write to %x in %s: %d\n",
file, blocks, reg, region_name, ret);
}
}
pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
blocks++;
}
ret = regmap_async_complete(regmap);
if (ret != 0)
adsp_err(dsp, "Failed to complete async write: %d\n", ret);
if (pos > firmware->size)
adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, blocks, pos - firmware->size);
wm_adsp_debugfs_save_binname(dsp, file);
out_fw:
regmap_async_complete(regmap);
release_firmware(firmware);
wm_adsp_buf_free(&buf_list);
out:
kfree(file);
return ret;
}
static int wm_adsp_create_name(struct wm_adsp *dsp)
{
char *p;
if (!dsp->name) {
dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
dsp->num);
if (!dsp->name)
return -ENOMEM;
}
if (!dsp->fwf_name) {
p = devm_kstrdup(dsp->dev, dsp->name, GFP_KERNEL);
if (!p)
return -ENOMEM;
dsp->fwf_name = p;
for (; *p != 0; ++p)
*p = tolower(*p);
}
return 0;
}
static int wm_adsp_common_init(struct wm_adsp *dsp)
{
int ret;
ret = wm_adsp_create_name(dsp);
if (ret)
return ret;
INIT_LIST_HEAD(&dsp->alg_regions);
INIT_LIST_HEAD(&dsp->ctl_list);
INIT_LIST_HEAD(&dsp->compr_list);
INIT_LIST_HEAD(&dsp->buffer_list);
mutex_init(&dsp->pwr_lock);
return 0;
}
int wm_adsp1_init(struct wm_adsp *dsp)
{
dsp->ops = &wm_adsp1_ops;
return wm_adsp_common_init(dsp);
}
EXPORT_SYMBOL_GPL(wm_adsp1_init);
int wm_adsp1_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_coeff_ctl *ctl;
int ret;
unsigned int val;
dsp->component = component;
mutex_lock(&dsp->pwr_lock);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, ADSP1_SYS_ENA);
/*
* For simplicity set the DSP clock rate to be the
* SYSCLK rate rather than making it configurable.
*/
if (dsp->sysclk_reg) {
ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
if (ret != 0) {
adsp_err(dsp, "Failed to read SYSCLK state: %d\n",
ret);
goto err_mutex;
}
val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP1_CONTROL_31,
ADSP1_CLK_SEL_MASK, val);
if (ret != 0) {
adsp_err(dsp, "Failed to set clock rate: %d\n",
ret);
goto err_mutex;
}
}
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp1_setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err_ena;
dsp->booted = true;
/* Start the core running */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START,
ADSP1_CORE_ENA | ADSP1_START);
dsp->running = true;
break;
case SND_SOC_DAPM_PRE_PMD:
dsp->running = false;
dsp->booted = false;
/* Halt the core */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
wm_adsp_free_alg_regions(dsp);
break;
default:
break;
}
mutex_unlock(&dsp->pwr_lock);
return 0;
err_ena:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp1_event);
static int wm_adsp2v2_enable_core(struct wm_adsp *dsp)
{
unsigned int val;
int ret, count;
/* Wait for the RAM to start, should be near instantaneous */
for (count = 0; count < 10; ++count) {
ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
if (ret != 0)
return ret;
if (val & ADSP2_RAM_RDY)
break;
usleep_range(250, 500);
}
if (!(val & ADSP2_RAM_RDY)) {
adsp_err(dsp, "Failed to start DSP RAM\n");
return -EBUSY;
}
adsp_dbg(dsp, "RAM ready after %d polls\n", count);
return 0;
}
static int wm_adsp2_enable_core(struct wm_adsp *dsp)
{
int ret;
ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, ADSP2_SYS_ENA);
if (ret != 0)
return ret;
return wm_adsp2v2_enable_core(dsp);
}
static int wm_adsp2_lock(struct wm_adsp *dsp, unsigned int lock_regions)
{
struct regmap *regmap = dsp->regmap;
unsigned int code0, code1, lock_reg;
if (!(lock_regions & WM_ADSP2_REGION_ALL))
return 0;
lock_regions &= WM_ADSP2_REGION_ALL;
lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
while (lock_regions) {
code0 = code1 = 0;
if (lock_regions & BIT(0)) {
code0 = ADSP2_LOCK_CODE_0;
code1 = ADSP2_LOCK_CODE_1;
}
if (lock_regions & BIT(1)) {
code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
}
regmap_write(regmap, lock_reg, code0);
regmap_write(regmap, lock_reg, code1);
lock_regions >>= 2;
lock_reg += 2;
}
return 0;
}
static int wm_adsp2_enable_memory(struct wm_adsp *dsp)
{
return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, ADSP2_MEM_ENA);
}
static void wm_adsp2_disable_memory(struct wm_adsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
}
static void wm_adsp2_disable_core(struct wm_adsp *dsp)
{
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, 0);
}
static void wm_adsp2v2_disable_core(struct wm_adsp *dsp)
{
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
}
static void wm_adsp_boot_work(struct work_struct *work)
{
struct wm_adsp *dsp = container_of(work,
struct wm_adsp,
boot_work);
int ret;
mutex_lock(&dsp->pwr_lock);
if (dsp->ops->enable_memory) {
ret = dsp->ops->enable_memory(dsp);
if (ret != 0)
goto err_mutex;
}
if (dsp->ops->enable_core) {
ret = dsp->ops->enable_core(dsp);
if (ret != 0)
goto err_mem;
}
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err_ena;
ret = dsp->ops->setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
dsp->booted = true;
mutex_unlock(&dsp->pwr_lock);
return;
err_ena:
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
err_mem:
if (dsp->ops->disable_memory)
dsp->ops->disable_memory(dsp);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
}
static int wm_halo_configure_mpu(struct wm_adsp *dsp, unsigned int lock_regions)
{
struct reg_sequence config[] = {
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
{ dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
};
return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
}
int wm_adsp2_set_dspclk(struct snd_soc_dapm_widget *w, unsigned int freq)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
struct wm_adsp *dsp = &dsps[w->shift];
int ret;
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
ADSP2_CLK_SEL_MASK,
freq << ADSP2_CLK_SEL_SHIFT);
if (ret)
adsp_err(dsp, "Failed to set clock rate: %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp2_set_dspclk);
int wm_adsp2_preloader_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct wm_adsp *dsp = &dsps[mc->shift - 1];
ucontrol->value.integer.value[0] = dsp->preloaded;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_preloader_get);
int wm_adsp2_preloader_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct wm_adsp *dsp = &dsps[mc->shift - 1];
char preload[32];
snprintf(preload, ARRAY_SIZE(preload), "%s Preload", dsp->name);
dsp->preloaded = ucontrol->value.integer.value[0];
if (ucontrol->value.integer.value[0])
snd_soc_component_force_enable_pin(component, preload);
else
snd_soc_component_disable_pin(component, preload);
snd_soc_dapm_sync(dapm);
flush_work(&dsp->boot_work);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_preloader_put);
static void wm_adsp_stop_watchdog(struct wm_adsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
ADSP2_WDT_ENA_MASK, 0);
}
static void wm_halo_stop_watchdog(struct wm_adsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
HALO_WDT_EN_MASK, 0);
}
int wm_adsp_early_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_coeff_ctl *ctl;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
queue_work(system_unbound_wq, &dsp->boot_work);
break;
case SND_SOC_DAPM_PRE_PMD:
mutex_lock(&dsp->pwr_lock);
wm_adsp_debugfs_clear(dsp);
dsp->fw_id = 0;
dsp->fw_id_version = 0;
dsp->booted = false;
if (dsp->ops->disable_memory)
dsp->ops->disable_memory(dsp);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
wm_adsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
adsp_dbg(dsp, "Shutdown complete\n");
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_early_event);
static int wm_adsp2_start_core(struct wm_adsp *dsp)
{
return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START,
ADSP2_CORE_ENA | ADSP2_START);
}
static void wm_adsp2_stop_core(struct wm_adsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START, 0);
}
int wm_adsp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
struct wm_adsp *dsp = &dsps[w->shift];
int ret;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
flush_work(&dsp->boot_work);
mutex_lock(&dsp->pwr_lock);
if (!dsp->booted) {
ret = -EIO;
goto err;
}
if (dsp->ops->enable_core) {
ret = dsp->ops->enable_core(dsp);
if (ret != 0)
goto err;
}
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
if (dsp->ops->lock_memory) {
ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
if (ret != 0) {
adsp_err(dsp, "Error configuring MPU: %d\n",
ret);
goto err;
}
}
if (dsp->ops->start_core) {
ret = dsp->ops->start_core(dsp);
if (ret != 0)
goto err;
}
if (wm_adsp_fw[dsp->fw].num_caps != 0) {
ret = wm_adsp_buffer_init(dsp);
if (ret < 0)
goto err;
}
dsp->running = true;
mutex_unlock(&dsp->pwr_lock);
break;
case SND_SOC_DAPM_PRE_PMD:
/* Tell the firmware to cleanup */
wm_adsp_signal_event_controls(dsp, WM_ADSP_FW_EVENT_SHUTDOWN);
if (dsp->ops->stop_watchdog)
dsp->ops->stop_watchdog(dsp);
/* Log firmware state, it can be useful for analysis */
if (dsp->ops->show_fw_status)
dsp->ops->show_fw_status(dsp);
mutex_lock(&dsp->pwr_lock);
dsp->running = false;
if (dsp->ops->stop_core)
dsp->ops->stop_core(dsp);
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
if (wm_adsp_fw[dsp->fw].num_caps != 0)
wm_adsp_buffer_free(dsp);
dsp->fatal_error = false;
mutex_unlock(&dsp->pwr_lock);
adsp_dbg(dsp, "Execution stopped\n");
break;
default:
break;
}
return 0;
err:
if (dsp->ops->stop_core)
dsp->ops->stop_core(dsp);
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_event);
static int wm_halo_start_core(struct wm_adsp *dsp)
{
return regmap_update_bits(dsp->regmap,
dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, HALO_CORE_EN);
}
static void wm_halo_stop_core(struct wm_adsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, 0);
/* reset halo core with CORE_SOFT_RESET */
regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
HALO_CORE_SOFT_RESET_MASK, 1);
}
int wm_adsp2_component_probe(struct wm_adsp *dsp, struct snd_soc_component *component)
{
char preload[32];
snprintf(preload, ARRAY_SIZE(preload), "%s Preload", dsp->name);
snd_soc_component_disable_pin(component, preload);
wm_adsp2_init_debugfs(dsp, component);
dsp->component = component;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_component_probe);
int wm_adsp2_component_remove(struct wm_adsp *dsp, struct snd_soc_component *component)
{
wm_adsp2_cleanup_debugfs(dsp);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_component_remove);
int wm_adsp2_init(struct wm_adsp *dsp)
{
int ret;
ret = wm_adsp_common_init(dsp);
if (ret)
return ret;
switch (dsp->rev) {
case 0:
/*
* Disable the DSP memory by default when in reset for a small
* power saving.
*/
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
if (ret) {
adsp_err(dsp,
"Failed to clear memory retention: %d\n", ret);
return ret;
}
dsp->ops = &wm_adsp2_ops[0];
break;
case 1:
dsp->ops = &wm_adsp2_ops[1];
break;
default:
dsp->ops = &wm_adsp2_ops[2];
break;
}
INIT_WORK(&dsp->boot_work, wm_adsp_boot_work);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_init);
int wm_halo_init(struct wm_adsp *dsp)
{
int ret;
ret = wm_adsp_common_init(dsp);
if (ret)
return ret;
dsp->ops = &wm_halo_ops;
INIT_WORK(&dsp->boot_work, wm_adsp_boot_work);
return 0;
}
EXPORT_SYMBOL_GPL(wm_halo_init);
void wm_adsp2_remove(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
while (!list_empty(&dsp->ctl_list)) {
ctl = list_first_entry(&dsp->ctl_list, struct wm_coeff_ctl,
list);
list_del(&ctl->list);
wm_adsp_free_ctl_blk(ctl);
}
}
EXPORT_SYMBOL_GPL(wm_adsp2_remove);
static inline int wm_adsp_compr_attached(struct wm_adsp_compr *compr)
{
return compr->buf != NULL;
}
static int wm_adsp_compr_attach(struct wm_adsp_compr *compr)
{
struct wm_adsp_compr_buf *buf = NULL, *tmp;
if (compr->dsp->fatal_error)
return -EINVAL;
list_for_each_entry(tmp, &compr->dsp->buffer_list, list) {
if (!tmp->name || !strcmp(compr->name, tmp->name)) {
buf = tmp;
break;
}
}
if (!buf)
return -EINVAL;
compr->buf = buf;
buf->compr = compr;
return 0;
}
static void wm_adsp_compr_detach(struct wm_adsp_compr *compr)
{
if (!compr)
return;
/* Wake the poll so it can see buffer is no longer attached */
if (compr->stream)
snd_compr_fragment_elapsed(compr->stream);
if (wm_adsp_compr_attached(compr)) {
compr->buf->compr = NULL;
compr->buf = NULL;
}
}
int wm_adsp_compr_open(struct wm_adsp *dsp, struct snd_compr_stream *stream)
{
struct wm_adsp_compr *compr, *tmp;
struct snd_soc_pcm_runtime *rtd = stream->private_data;
int ret = 0;
mutex_lock(&dsp->pwr_lock);
if (wm_adsp_fw[dsp->fw].num_caps == 0) {
adsp_err(dsp, "%s: Firmware does not support compressed API\n",
rtd->codec_dai->name);
ret = -ENXIO;
goto out;
}
if (wm_adsp_fw[dsp->fw].compr_direction != stream->direction) {
adsp_err(dsp, "%s: Firmware does not support stream direction\n",
rtd->codec_dai->name);
ret = -EINVAL;
goto out;
}
list_for_each_entry(tmp, &dsp->compr_list, list) {
if (!strcmp(tmp->name, rtd->codec_dai->name)) {
adsp_err(dsp, "%s: Only a single stream supported per dai\n",
rtd->codec_dai->name);
ret = -EBUSY;
goto out;
}
}
compr = kzalloc(sizeof(*compr), GFP_KERNEL);
if (!compr) {
ret = -ENOMEM;
goto out;
}
compr->dsp = dsp;
compr->stream = stream;
compr->name = rtd->codec_dai->name;
list_add_tail(&compr->list, &dsp->compr_list);
stream->runtime->private_data = compr;
out:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_open);
int wm_adsp_compr_free(struct snd_compr_stream *stream)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
mutex_lock(&dsp->pwr_lock);
wm_adsp_compr_detach(compr);
list_del(&compr->list);
kfree(compr->raw_buf);
kfree(compr);
mutex_unlock(&dsp->pwr_lock);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_free);
static int wm_adsp_compr_check_params(struct snd_compr_stream *stream,
struct snd_compr_params *params)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
const struct wm_adsp_fw_caps *caps;
const struct snd_codec_desc *desc;
int i, j;
if (params->buffer.fragment_size < WM_ADSP_MIN_FRAGMENT_SIZE ||
params->buffer.fragment_size > WM_ADSP_MAX_FRAGMENT_SIZE ||
params->buffer.fragments < WM_ADSP_MIN_FRAGMENTS ||
params->buffer.fragments > WM_ADSP_MAX_FRAGMENTS ||
params->buffer.fragment_size % WM_ADSP_DATA_WORD_SIZE) {
compr_err(compr, "Invalid buffer fragsize=%d fragments=%d\n",
params->buffer.fragment_size,
params->buffer.fragments);
return -EINVAL;
}
for (i = 0; i < wm_adsp_fw[dsp->fw].num_caps; i++) {
caps = &wm_adsp_fw[dsp->fw].caps[i];
desc = &caps->desc;
if (caps->id != params->codec.id)
continue;
if (stream->direction == SND_COMPRESS_PLAYBACK) {
if (desc->max_ch < params->codec.ch_out)
continue;
} else {
if (desc->max_ch < params->codec.ch_in)
continue;
}
if (!(desc->formats & (1 << params->codec.format)))
continue;
for (j = 0; j < desc->num_sample_rates; ++j)
if (desc->sample_rates[j] == params->codec.sample_rate)
return 0;
}
compr_err(compr, "Invalid params id=%u ch=%u,%u rate=%u fmt=%u\n",
params->codec.id, params->codec.ch_in, params->codec.ch_out,
params->codec.sample_rate, params->codec.format);
return -EINVAL;
}
static inline unsigned int wm_adsp_compr_frag_words(struct wm_adsp_compr *compr)
{
return compr->size.fragment_size / WM_ADSP_DATA_WORD_SIZE;
}
int wm_adsp_compr_set_params(struct snd_compr_stream *stream,
struct snd_compr_params *params)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
unsigned int size;
int ret;
ret = wm_adsp_compr_check_params(stream, params);
if (ret)
return ret;
compr->size = params->buffer;
compr_dbg(compr, "fragment_size=%d fragments=%d\n",
compr->size.fragment_size, compr->size.fragments);
size = wm_adsp_compr_frag_words(compr) * sizeof(*compr->raw_buf);
compr->raw_buf = kmalloc(size, GFP_DMA | GFP_KERNEL);
if (!compr->raw_buf)
return -ENOMEM;
compr->sample_rate = params->codec.sample_rate;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_set_params);
int wm_adsp_compr_get_caps(struct snd_compr_stream *stream,
struct snd_compr_caps *caps)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
int fw = compr->dsp->fw;
int i;
if (wm_adsp_fw[fw].caps) {
for (i = 0; i < wm_adsp_fw[fw].num_caps; i++)
caps->codecs[i] = wm_adsp_fw[fw].caps[i].id;
caps->num_codecs = i;
caps->direction = wm_adsp_fw[fw].compr_direction;
caps->min_fragment_size = WM_ADSP_MIN_FRAGMENT_SIZE;
caps->max_fragment_size = WM_ADSP_MAX_FRAGMENT_SIZE;
caps->min_fragments = WM_ADSP_MIN_FRAGMENTS;
caps->max_fragments = WM_ADSP_MAX_FRAGMENTS;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_get_caps);
static int wm_adsp_read_data_block(struct wm_adsp *dsp, int mem_type,
unsigned int mem_addr,
unsigned int num_words, u32 *data)
{
struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type);
unsigned int i, reg;
int ret;
if (!mem)
return -EINVAL;
reg = dsp->ops->region_to_reg(mem, mem_addr);
ret = regmap_raw_read(dsp->regmap, reg, data,
sizeof(*data) * num_words);
if (ret < 0)
return ret;
for (i = 0; i < num_words; ++i)
data[i] = be32_to_cpu(data[i]) & 0x00ffffffu;
return 0;
}
static inline int wm_adsp_read_data_word(struct wm_adsp *dsp, int mem_type,
unsigned int mem_addr, u32 *data)
{
return wm_adsp_read_data_block(dsp, mem_type, mem_addr, 1, data);
}
static int wm_adsp_write_data_word(struct wm_adsp *dsp, int mem_type,
unsigned int mem_addr, u32 data)
{
struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type);
unsigned int reg;
if (!mem)
return -EINVAL;
reg = dsp->ops->region_to_reg(mem, mem_addr);
data = cpu_to_be32(data & 0x00ffffffu);
return regmap_raw_write(dsp->regmap, reg, &data, sizeof(data));
}
static inline int wm_adsp_buffer_read(struct wm_adsp_compr_buf *buf,
unsigned int field_offset, u32 *data)
{
return wm_adsp_read_data_word(buf->dsp, buf->host_buf_mem_type,
buf->host_buf_ptr + field_offset, data);
}
static inline int wm_adsp_buffer_write(struct wm_adsp_compr_buf *buf,
unsigned int field_offset, u32 data)
{
return wm_adsp_write_data_word(buf->dsp, buf->host_buf_mem_type,
buf->host_buf_ptr + field_offset, data);
}
static void wm_adsp_remove_padding(u32 *buf, int nwords, int data_word_size)
{
u8 *pack_in = (u8 *)buf;
u8 *pack_out = (u8 *)buf;
int i, j;
/* Remove the padding bytes from the data read from the DSP */
for (i = 0; i < nwords; i++) {
for (j = 0; j < data_word_size; j++)
*pack_out++ = *pack_in++;
pack_in += sizeof(*buf) - data_word_size;
}
}
static int wm_adsp_buffer_populate(struct wm_adsp_compr_buf *buf)
{
const struct wm_adsp_fw_caps *caps = wm_adsp_fw[buf->dsp->fw].caps;
struct wm_adsp_buffer_region *region;
u32 offset = 0;
int i, ret;
buf->regions = kcalloc(caps->num_regions, sizeof(*buf->regions),
GFP_KERNEL);
if (!buf->regions)
return -ENOMEM;
for (i = 0; i < caps->num_regions; ++i) {
region = &buf->regions[i];
region->offset = offset;
region->mem_type = caps->region_defs[i].mem_type;
ret = wm_adsp_buffer_read(buf, caps->region_defs[i].base_offset,
&region->base_addr);
if (ret < 0)
return ret;
ret = wm_adsp_buffer_read(buf, caps->region_defs[i].size_offset,
&offset);
if (ret < 0)
return ret;
region->cumulative_size = offset;
compr_dbg(buf,
"region=%d type=%d base=%08x off=%08x size=%08x\n",
i, region->mem_type, region->base_addr,
region->offset, region->cumulative_size);
}
return 0;
}
static void wm_adsp_buffer_clear(struct wm_adsp_compr_buf *buf)
{
buf->irq_count = 0xFFFFFFFF;
buf->read_index = -1;
buf->avail = 0;
}
static struct wm_adsp_compr_buf *wm_adsp_buffer_alloc(struct wm_adsp *dsp)
{
struct wm_adsp_compr_buf *buf;
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return NULL;
buf->dsp = dsp;
wm_adsp_buffer_clear(buf);
list_add_tail(&buf->list, &dsp->buffer_list);
return buf;
}
static int wm_adsp_buffer_parse_legacy(struct wm_adsp *dsp)
{
struct wm_adsp_alg_region *alg_region;
struct wm_adsp_compr_buf *buf;
u32 xmalg, addr, magic;
int i, ret;
alg_region = wm_adsp_find_alg_region(dsp, WMFW_ADSP2_XM, dsp->fw_id);
if (!alg_region) {
adsp_err(dsp, "No algorithm region found\n");
return -EINVAL;
}
buf = wm_adsp_buffer_alloc(dsp);
if (!buf)
return -ENOMEM;
xmalg = dsp->ops->sys_config_size / sizeof(__be32);
addr = alg_region->base + xmalg + ALG_XM_FIELD(magic);
ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr, &magic);
if (ret < 0)
return ret;
if (magic != WM_ADSP_ALG_XM_STRUCT_MAGIC)
return -ENODEV;
addr = alg_region->base + xmalg + ALG_XM_FIELD(host_buf_ptr);
for (i = 0; i < 5; ++i) {
ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr,
&buf->host_buf_ptr);
if (ret < 0)
return ret;
if (buf->host_buf_ptr)
break;
usleep_range(1000, 2000);
}
if (!buf->host_buf_ptr)
return -EIO;
buf->host_buf_mem_type = WMFW_ADSP2_XM;
ret = wm_adsp_buffer_populate(buf);
if (ret < 0)
return ret;
compr_dbg(buf, "legacy host_buf_ptr=%x\n", buf->host_buf_ptr);
return 0;
}
static int wm_adsp_buffer_parse_coeff(struct wm_coeff_ctl *ctl)
{
struct wm_adsp_host_buf_coeff_v1 coeff_v1;
struct wm_adsp_compr_buf *buf;
unsigned int val, reg;
int ret, i;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
for (i = 0; i < 5; ++i) {
ret = regmap_raw_read(ctl->dsp->regmap, reg, &val, sizeof(val));
if (ret < 0)
return ret;
if (val)
break;
usleep_range(1000, 2000);
}
if (!val) {
adsp_err(ctl->dsp, "Failed to acquire host buffer\n");
return -EIO;
}
buf = wm_adsp_buffer_alloc(ctl->dsp);
if (!buf)
return -ENOMEM;
buf->host_buf_mem_type = ctl->alg_region.type;
buf->host_buf_ptr = be32_to_cpu(val);
ret = wm_adsp_buffer_populate(buf);
if (ret < 0)
return ret;
/*
* v0 host_buffer coefficients didn't have versioning, so if the
* control is one word, assume version 0.
*/
if (ctl->len == 4) {
compr_dbg(buf, "host_buf_ptr=%x\n", buf->host_buf_ptr);
return 0;
}
ret = regmap_raw_read(ctl->dsp->regmap, reg, &coeff_v1,
sizeof(coeff_v1));
if (ret < 0)
return ret;
coeff_v1.versions = be32_to_cpu(coeff_v1.versions);
val = coeff_v1.versions & HOST_BUF_COEFF_COMPAT_VER_MASK;
val >>= HOST_BUF_COEFF_COMPAT_VER_SHIFT;
if (val > HOST_BUF_COEFF_SUPPORTED_COMPAT_VER) {
adsp_err(ctl->dsp,
"Host buffer coeff ver %u > supported version %u\n",
val, HOST_BUF_COEFF_SUPPORTED_COMPAT_VER);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(coeff_v1.name); i++)
coeff_v1.name[i] = be32_to_cpu(coeff_v1.name[i]);
wm_adsp_remove_padding((u32 *)&coeff_v1.name,
ARRAY_SIZE(coeff_v1.name),
WM_ADSP_DATA_WORD_SIZE);
buf->name = kasprintf(GFP_KERNEL, "%s-dsp-%s", ctl->dsp->part,
(char *)&coeff_v1.name);
compr_dbg(buf, "host_buf_ptr=%x coeff version %u\n",
buf->host_buf_ptr, val);
return val;
}
static int wm_adsp_buffer_init(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->type != WMFW_CTL_TYPE_HOST_BUFFER)
continue;
if (!ctl->enabled)
continue;
ret = wm_adsp_buffer_parse_coeff(ctl);
if (ret < 0) {
adsp_err(dsp, "Failed to parse coeff: %d\n", ret);
goto error;
} else if (ret == 0) {
/* Only one buffer supported for version 0 */
return 0;
}
}
if (list_empty(&dsp->buffer_list)) {
/* Fall back to legacy support */
ret = wm_adsp_buffer_parse_legacy(dsp);
if (ret) {
adsp_err(dsp, "Failed to parse legacy: %d\n", ret);
goto error;
}
}
return 0;
error:
wm_adsp_buffer_free(dsp);
return ret;
}
static int wm_adsp_buffer_free(struct wm_adsp *dsp)
{
struct wm_adsp_compr_buf *buf, *tmp;
list_for_each_entry_safe(buf, tmp, &dsp->buffer_list, list) {
wm_adsp_compr_detach(buf->compr);
kfree(buf->name);
kfree(buf->regions);
list_del(&buf->list);
kfree(buf);
}
return 0;
}
static int wm_adsp_buffer_get_error(struct wm_adsp_compr_buf *buf)
{
int ret;
ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(error), &buf->error);
if (ret < 0) {
compr_err(buf, "Failed to check buffer error: %d\n", ret);
return ret;
}
if (buf->error != 0) {
compr_err(buf, "Buffer error occurred: %d\n", buf->error);
return -EIO;
}
return 0;
}
int wm_adsp_compr_trigger(struct snd_compr_stream *stream, int cmd)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
int ret = 0;
compr_dbg(compr, "Trigger: %d\n", cmd);
mutex_lock(&dsp->pwr_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!wm_adsp_compr_attached(compr)) {
ret = wm_adsp_compr_attach(compr);
if (ret < 0) {
compr_err(compr, "Failed to link buffer and stream: %d\n",
ret);
break;
}
}
ret = wm_adsp_buffer_get_error(compr->buf);
if (ret < 0)
break;
/* Trigger the IRQ at one fragment of data */
ret = wm_adsp_buffer_write(compr->buf,
HOST_BUFFER_FIELD(high_water_mark),
wm_adsp_compr_frag_words(compr));
if (ret < 0) {
compr_err(compr, "Failed to set high water mark: %d\n",
ret);
break;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (wm_adsp_compr_attached(compr))
wm_adsp_buffer_clear(compr->buf);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_trigger);
static inline int wm_adsp_buffer_size(struct wm_adsp_compr_buf *buf)
{
int last_region = wm_adsp_fw[buf->dsp->fw].caps->num_regions - 1;
return buf->regions[last_region].cumulative_size;
}
static int wm_adsp_buffer_update_avail(struct wm_adsp_compr_buf *buf)
{
u32 next_read_index, next_write_index;
int write_index, read_index, avail;
int ret;
/* Only sync read index if we haven't already read a valid index */
if (buf->read_index < 0) {
ret = wm_adsp_buffer_read(buf,
HOST_BUFFER_FIELD(next_read_index),
&next_read_index);
if (ret < 0)
return ret;
read_index = sign_extend32(next_read_index, 23);
if (read_index < 0) {
compr_dbg(buf, "Avail check on unstarted stream\n");
return 0;
}
buf->read_index = read_index;
}
ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(next_write_index),
&next_write_index);
if (ret < 0)
return ret;
write_index = sign_extend32(next_write_index, 23);
avail = write_index - buf->read_index;
if (avail < 0)
avail += wm_adsp_buffer_size(buf);
compr_dbg(buf, "readindex=0x%x, writeindex=0x%x, avail=%d\n",
buf->read_index, write_index, avail * WM_ADSP_DATA_WORD_SIZE);
buf->avail = avail;
return 0;
}
int wm_adsp_compr_handle_irq(struct wm_adsp *dsp)
{
struct wm_adsp_compr_buf *buf;
struct wm_adsp_compr *compr;
int ret = 0;
mutex_lock(&dsp->pwr_lock);
if (list_empty(&dsp->buffer_list)) {
ret = -ENODEV;
goto out;
}
adsp_dbg(dsp, "Handling buffer IRQ\n");
list_for_each_entry(buf, &dsp->buffer_list, list) {
compr = buf->compr;
ret = wm_adsp_buffer_get_error(buf);
if (ret < 0)
goto out_notify; /* Wake poll to report error */
ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(irq_count),
&buf->irq_count);
if (ret < 0) {
compr_err(buf, "Failed to get irq_count: %d\n", ret);
goto out;
}
ret = wm_adsp_buffer_update_avail(buf);
if (ret < 0) {
compr_err(buf, "Error reading avail: %d\n", ret);
goto out;
}
if (wm_adsp_fw[dsp->fw].voice_trigger && buf->irq_count == 2)
ret = WM_ADSP_COMPR_VOICE_TRIGGER;
out_notify:
if (compr && compr->stream)
snd_compr_fragment_elapsed(compr->stream);
}
out:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_handle_irq);
static int wm_adsp_buffer_reenable_irq(struct wm_adsp_compr_buf *buf)
{
if (buf->irq_count & 0x01)
return 0;
compr_dbg(buf, "Enable IRQ(0x%x) for next fragment\n", buf->irq_count);
buf->irq_count |= 0x01;
return wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(irq_ack),
buf->irq_count);
}
int wm_adsp_compr_pointer(struct snd_compr_stream *stream,
struct snd_compr_tstamp *tstamp)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
struct wm_adsp_compr_buf *buf;
int ret = 0;
compr_dbg(compr, "Pointer request\n");
mutex_lock(&dsp->pwr_lock);
buf = compr->buf;
if (dsp->fatal_error || !buf || buf->error) {
snd_compr_stop_error(stream, SNDRV_PCM_STATE_XRUN);
ret = -EIO;
goto out;
}
if (buf->avail < wm_adsp_compr_frag_words(compr)) {
ret = wm_adsp_buffer_update_avail(buf);
if (ret < 0) {
compr_err(compr, "Error reading avail: %d\n", ret);
goto out;
}
/*
* If we really have less than 1 fragment available tell the
* DSP to inform us once a whole fragment is available.
*/
if (buf->avail < wm_adsp_compr_frag_words(compr)) {
ret = wm_adsp_buffer_get_error(buf);
if (ret < 0) {
if (buf->error)
snd_compr_stop_error(stream,
SNDRV_PCM_STATE_XRUN);
goto out;
}
ret = wm_adsp_buffer_reenable_irq(buf);
if (ret < 0) {
compr_err(compr, "Failed to re-enable buffer IRQ: %d\n",
ret);
goto out;
}
}
}
tstamp->copied_total = compr->copied_total;
tstamp->copied_total += buf->avail * WM_ADSP_DATA_WORD_SIZE;
tstamp->sampling_rate = compr->sample_rate;
out:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_pointer);
static int wm_adsp_buffer_capture_block(struct wm_adsp_compr *compr, int target)
{
struct wm_adsp_compr_buf *buf = compr->buf;
unsigned int adsp_addr;
int mem_type, nwords, max_read;
int i, ret;
/* Calculate read parameters */
for (i = 0; i < wm_adsp_fw[buf->dsp->fw].caps->num_regions; ++i)
if (buf->read_index < buf->regions[i].cumulative_size)
break;
if (i == wm_adsp_fw[buf->dsp->fw].caps->num_regions)
return -EINVAL;
mem_type = buf->regions[i].mem_type;
adsp_addr = buf->regions[i].base_addr +
(buf->read_index - buf->regions[i].offset);
max_read = wm_adsp_compr_frag_words(compr);
nwords = buf->regions[i].cumulative_size - buf->read_index;
if (nwords > target)
nwords = target;
if (nwords > buf->avail)
nwords = buf->avail;
if (nwords > max_read)
nwords = max_read;
if (!nwords)
return 0;
/* Read data from DSP */
ret = wm_adsp_read_data_block(buf->dsp, mem_type, adsp_addr,
nwords, compr->raw_buf);
if (ret < 0)
return ret;
wm_adsp_remove_padding(compr->raw_buf, nwords, WM_ADSP_DATA_WORD_SIZE);
/* update read index to account for words read */
buf->read_index += nwords;
if (buf->read_index == wm_adsp_buffer_size(buf))
buf->read_index = 0;
ret = wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(next_read_index),
buf->read_index);
if (ret < 0)
return ret;
/* update avail to account for words read */
buf->avail -= nwords;
return nwords;
}
static int wm_adsp_compr_read(struct wm_adsp_compr *compr,
char __user *buf, size_t count)
{
struct wm_adsp *dsp = compr->dsp;
int ntotal = 0;
int nwords, nbytes;
compr_dbg(compr, "Requested read of %zu bytes\n", count);
if (dsp->fatal_error || !compr->buf || compr->buf->error) {
snd_compr_stop_error(compr->stream, SNDRV_PCM_STATE_XRUN);
return -EIO;
}
count /= WM_ADSP_DATA_WORD_SIZE;
do {
nwords = wm_adsp_buffer_capture_block(compr, count);
if (nwords < 0) {
compr_err(compr, "Failed to capture block: %d\n",
nwords);
return nwords;
}
nbytes = nwords * WM_ADSP_DATA_WORD_SIZE;
compr_dbg(compr, "Read %d bytes\n", nbytes);
if (copy_to_user(buf + ntotal, compr->raw_buf, nbytes)) {
compr_err(compr, "Failed to copy data to user: %d, %d\n",
ntotal, nbytes);
return -EFAULT;
}
count -= nwords;
ntotal += nbytes;
} while (nwords > 0 && count > 0);
compr->copied_total += ntotal;
return ntotal;
}
int wm_adsp_compr_copy(struct snd_compr_stream *stream, char __user *buf,
size_t count)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
int ret;
mutex_lock(&dsp->pwr_lock);
if (stream->direction == SND_COMPRESS_CAPTURE)
ret = wm_adsp_compr_read(compr, buf, count);
else
ret = -ENOTSUPP;
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_copy);
static void wm_adsp_fatal_error(struct wm_adsp *dsp)
{
struct wm_adsp_compr *compr;
dsp->fatal_error = true;
list_for_each_entry(compr, &dsp->compr_list, list) {
if (compr->stream)
snd_compr_fragment_elapsed(compr->stream);
}
}
irqreturn_t wm_adsp2_bus_error(int irq, void *data)
{
struct wm_adsp *dsp = (struct wm_adsp *)data;
unsigned int val;
struct regmap *regmap = dsp->regmap;
int ret = 0;
mutex_lock(&dsp->pwr_lock);
ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
if (ret) {
adsp_err(dsp,
"Failed to read Region Lock Ctrl register: %d\n", ret);
goto error;
}
if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
adsp_err(dsp, "watchdog timeout error\n");
dsp->ops->stop_watchdog(dsp);
wm_adsp_fatal_error(dsp);
}
if (val & (ADSP2_SLAVE_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
if (val & ADSP2_SLAVE_ERR_MASK)
adsp_err(dsp, "bus error: slave error\n");
else
adsp_err(dsp, "bus error: region lock error\n");
ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
if (ret) {
adsp_err(dsp,
"Failed to read Bus Err Addr register: %d\n",
ret);
goto error;
}
adsp_err(dsp, "bus error address = 0x%x\n",
val & ADSP2_BUS_ERR_ADDR_MASK);
ret = regmap_read(regmap,
dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
&val);
if (ret) {
adsp_err(dsp,
"Failed to read Pmem Xmem Err Addr register: %d\n",
ret);
goto error;
}
adsp_err(dsp, "xmem error address = 0x%x\n",
val & ADSP2_XMEM_ERR_ADDR_MASK);
adsp_err(dsp, "pmem error address = 0x%x\n",
(val & ADSP2_PMEM_ERR_ADDR_MASK) >>
ADSP2_PMEM_ERR_ADDR_SHIFT);
}
regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
error:
mutex_unlock(&dsp->pwr_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(wm_adsp2_bus_error);
irqreturn_t wm_halo_bus_error(int irq, void *data)
{
struct wm_adsp *dsp = (struct wm_adsp *)data;
struct regmap *regmap = dsp->regmap;
unsigned int fault[6];
struct reg_sequence clear[] = {
{ dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
{ dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
{ dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
};
int ret;
mutex_lock(&dsp->pwr_lock);
ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
fault);
if (ret) {
adsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
goto exit_unlock;
}
adsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
*fault & HALO_AHBM_FLAGS_ERR_MASK,
(*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
HALO_AHBM_CORE_ERR_ADDR_SHIFT);
ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
fault);
if (ret) {
adsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
goto exit_unlock;
}
adsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
fault, ARRAY_SIZE(fault));
if (ret) {
adsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
goto exit_unlock;
}
adsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
adsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
adsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
if (ret)
adsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
exit_unlock:
mutex_unlock(&dsp->pwr_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(wm_halo_bus_error);
irqreturn_t wm_halo_wdt_expire(int irq, void *data)
{
struct wm_adsp *dsp = data;
mutex_lock(&dsp->pwr_lock);
adsp_warn(dsp, "WDT Expiry Fault\n");
dsp->ops->stop_watchdog(dsp);
wm_adsp_fatal_error(dsp);
mutex_unlock(&dsp->pwr_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(wm_halo_wdt_expire);
static struct wm_adsp_ops wm_adsp1_ops = {
.validate_version = wm_adsp_validate_version,
.parse_sizes = wm_adsp1_parse_sizes,
.region_to_reg = wm_adsp_region_to_reg,
};
static struct wm_adsp_ops wm_adsp2_ops[] = {
{
.sys_config_size = sizeof(struct wm_adsp_system_config_xm_hdr),
.parse_sizes = wm_adsp2_parse_sizes,
.validate_version = wm_adsp_validate_version,
.setup_algs = wm_adsp2_setup_algs,
.region_to_reg = wm_adsp_region_to_reg,
.show_fw_status = wm_adsp2_show_fw_status,
.enable_memory = wm_adsp2_enable_memory,
.disable_memory = wm_adsp2_disable_memory,
.enable_core = wm_adsp2_enable_core,
.disable_core = wm_adsp2_disable_core,
.start_core = wm_adsp2_start_core,
.stop_core = wm_adsp2_stop_core,
},
{
.sys_config_size = sizeof(struct wm_adsp_system_config_xm_hdr),
.parse_sizes = wm_adsp2_parse_sizes,
.validate_version = wm_adsp_validate_version,
.setup_algs = wm_adsp2_setup_algs,
.region_to_reg = wm_adsp_region_to_reg,
.show_fw_status = wm_adsp2v2_show_fw_status,
.enable_memory = wm_adsp2_enable_memory,
.disable_memory = wm_adsp2_disable_memory,
.lock_memory = wm_adsp2_lock,
.enable_core = wm_adsp2v2_enable_core,
.disable_core = wm_adsp2v2_disable_core,
.start_core = wm_adsp2_start_core,
.stop_core = wm_adsp2_stop_core,
},
{
.sys_config_size = sizeof(struct wm_adsp_system_config_xm_hdr),
.parse_sizes = wm_adsp2_parse_sizes,
.validate_version = wm_adsp_validate_version,
.setup_algs = wm_adsp2_setup_algs,
.region_to_reg = wm_adsp_region_to_reg,
.show_fw_status = wm_adsp2v2_show_fw_status,
.stop_watchdog = wm_adsp_stop_watchdog,
.enable_memory = wm_adsp2_enable_memory,
.disable_memory = wm_adsp2_disable_memory,
.lock_memory = wm_adsp2_lock,
.enable_core = wm_adsp2v2_enable_core,
.disable_core = wm_adsp2v2_disable_core,
.start_core = wm_adsp2_start_core,
.stop_core = wm_adsp2_stop_core,
},
};
static struct wm_adsp_ops wm_halo_ops = {
.sys_config_size = sizeof(struct wm_halo_system_config_xm_hdr),
.parse_sizes = wm_adsp2_parse_sizes,
.validate_version = wm_halo_validate_version,
.setup_algs = wm_halo_setup_algs,
.region_to_reg = wm_halo_region_to_reg,
.show_fw_status = wm_halo_show_fw_status,
.stop_watchdog = wm_halo_stop_watchdog,
.lock_memory = wm_halo_configure_mpu,
.start_core = wm_halo_start_core,
.stop_core = wm_halo_stop_core,
};
MODULE_LICENSE("GPL v2");