OpenCloudOS-Kernel/drivers/scsi/myrs.c

3273 lines
92 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
*
* This driver supports the newer, SCSI-based firmware interface only.
*
* Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com>
*
* Based on the original DAC960 driver, which has
* Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
* Portions Copyright 2002 by Mylex (An IBM Business Unit)
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/raid_class.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include "myrs.h"
static struct raid_template *myrs_raid_template;
static struct myrs_devstate_name_entry {
enum myrs_devstate state;
char *name;
} myrs_devstate_name_list[] = {
{ MYRS_DEVICE_UNCONFIGURED, "Unconfigured" },
{ MYRS_DEVICE_ONLINE, "Online" },
{ MYRS_DEVICE_REBUILD, "Rebuild" },
{ MYRS_DEVICE_MISSING, "Missing" },
{ MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" },
{ MYRS_DEVICE_OFFLINE, "Offline" },
{ MYRS_DEVICE_CRITICAL, "Critical" },
{ MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" },
{ MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" },
{ MYRS_DEVICE_STANDBY, "Standby" },
{ MYRS_DEVICE_INVALID_STATE, "Invalid" },
};
static char *myrs_devstate_name(enum myrs_devstate state)
{
struct myrs_devstate_name_entry *entry = myrs_devstate_name_list;
int i;
for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) {
if (entry[i].state == state)
return entry[i].name;
}
return NULL;
}
static struct myrs_raid_level_name_entry {
enum myrs_raid_level level;
char *name;
} myrs_raid_level_name_list[] = {
{ MYRS_RAID_LEVEL0, "RAID0" },
{ MYRS_RAID_LEVEL1, "RAID1" },
{ MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" },
{ MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" },
{ MYRS_RAID_LEVEL6, "RAID6" },
{ MYRS_RAID_JBOD, "JBOD" },
{ MYRS_RAID_NEWSPAN, "New Mylex SPAN" },
{ MYRS_RAID_LEVEL3F, "RAID3 fixed parity" },
{ MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" },
{ MYRS_RAID_SPAN, "Mylex SPAN" },
{ MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" },
{ MYRS_RAID_LEVELE, "RAIDE (concatenation)" },
{ MYRS_RAID_PHYSICAL, "Physical device" },
};
static char *myrs_raid_level_name(enum myrs_raid_level level)
{
struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list;
int i;
for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) {
if (entry[i].level == level)
return entry[i].name;
}
return NULL;
}
/**
* myrs_reset_cmd - clears critical fields in struct myrs_cmdblk
*/
static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk)
{
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
memset(mbox, 0, sizeof(union myrs_cmd_mbox));
cmd_blk->status = 0;
}
/**
* myrs_qcmd - queues Command for DAC960 V2 Series Controllers.
*/
static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
{
void __iomem *base = cs->io_base;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox;
cs->write_cmd_mbox(next_mbox, mbox);
if (cs->prev_cmd_mbox1->words[0] == 0 ||
cs->prev_cmd_mbox2->words[0] == 0)
cs->get_cmd_mbox(base);
cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1;
cs->prev_cmd_mbox1 = next_mbox;
if (++next_mbox > cs->last_cmd_mbox)
next_mbox = cs->first_cmd_mbox;
cs->next_cmd_mbox = next_mbox;
}
/**
* myrs_exec_cmd - executes V2 Command and waits for completion.
*/
static void myrs_exec_cmd(struct myrs_hba *cs,
struct myrs_cmdblk *cmd_blk)
{
DECLARE_COMPLETION_ONSTACK(complete);
unsigned long flags;
cmd_blk->complete = &complete;
spin_lock_irqsave(&cs->queue_lock, flags);
myrs_qcmd(cs, cmd_blk);
spin_unlock_irqrestore(&cs->queue_lock, flags);
WARN_ON(in_interrupt());
wait_for_completion(&complete);
}
/**
* myrs_report_progress - prints progress message
*/
static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num,
unsigned char *msg, unsigned long blocks,
unsigned long size)
{
shost_printk(KERN_INFO, cs->host,
"Logical Drive %d: %s in Progress: %d%% completed\n",
ldev_num, msg,
(100 * (int)(blocks >> 7)) / (int)(size >> 7));
}
/**
* myrs_get_ctlr_info - executes a Controller Information IOCTL Command
*/
static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs)
{
struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
dma_addr_t ctlr_info_addr;
union myrs_sgl *sgl;
unsigned char status;
unsigned short ldev_present, ldev_critical, ldev_offline;
ldev_present = cs->ctlr_info->ldev_present;
ldev_critical = cs->ctlr_info->ldev_critical;
ldev_offline = cs->ctlr_info->ldev_offline;
ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info,
sizeof(struct myrs_ctlr_info),
DMA_FROM_DEVICE);
if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr))
return MYRS_STATUS_FAILED;
mutex_lock(&cs->dcmd_mutex);
myrs_reset_cmd(cmd_blk);
mbox->ctlr_info.id = MYRS_DCMD_TAG;
mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL;
mbox->ctlr_info.control.dma_ctrl_to_host = true;
mbox->ctlr_info.control.no_autosense = true;
mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info);
mbox->ctlr_info.ctlr_num = 0;
mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO;
sgl = &mbox->ctlr_info.dma_addr;
sgl->sge[0].sge_addr = ctlr_info_addr;
sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n");
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
dma_unmap_single(&cs->pdev->dev, ctlr_info_addr,
sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE);
if (status == MYRS_STATUS_SUCCESS) {
if (cs->ctlr_info->bg_init_active +
cs->ctlr_info->ldev_init_active +
cs->ctlr_info->pdev_init_active +
cs->ctlr_info->cc_active +
cs->ctlr_info->rbld_active +
cs->ctlr_info->exp_active != 0)
cs->needs_update = true;
if (cs->ctlr_info->ldev_present != ldev_present ||
cs->ctlr_info->ldev_critical != ldev_critical ||
cs->ctlr_info->ldev_offline != ldev_offline)
shost_printk(KERN_INFO, cs->host,
"Logical drive count changes (%d/%d/%d)\n",
cs->ctlr_info->ldev_critical,
cs->ctlr_info->ldev_offline,
cs->ctlr_info->ldev_present);
}
return status;
}
/**
* myrs_get_ldev_info - executes a Logical Device Information IOCTL Command
*/
static unsigned char myrs_get_ldev_info(struct myrs_hba *cs,
unsigned short ldev_num, struct myrs_ldev_info *ldev_info)
{
struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
dma_addr_t ldev_info_addr;
struct myrs_ldev_info ldev_info_orig;
union myrs_sgl *sgl;
unsigned char status;
memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info));
ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info,
sizeof(struct myrs_ldev_info),
DMA_FROM_DEVICE);
if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr))
return MYRS_STATUS_FAILED;
mutex_lock(&cs->dcmd_mutex);
myrs_reset_cmd(cmd_blk);
mbox->ldev_info.id = MYRS_DCMD_TAG;
mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL;
mbox->ldev_info.control.dma_ctrl_to_host = true;
mbox->ldev_info.control.no_autosense = true;
mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info);
mbox->ldev_info.ldev.ldev_num = ldev_num;
mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID;
sgl = &mbox->ldev_info.dma_addr;
sgl->sge[0].sge_addr = ldev_info_addr;
sgl->sge[0].sge_count = mbox->ldev_info.dma_size;
dev_dbg(&cs->host->shost_gendev,
"Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num);
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
dma_unmap_single(&cs->pdev->dev, ldev_info_addr,
sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE);
if (status == MYRS_STATUS_SUCCESS) {
unsigned short ldev_num = ldev_info->ldev_num;
struct myrs_ldev_info *new = ldev_info;
struct myrs_ldev_info *old = &ldev_info_orig;
unsigned long ldev_size = new->cfg_devsize;
if (new->dev_state != old->dev_state) {
const char *name;
name = myrs_devstate_name(new->dev_state);
shost_printk(KERN_INFO, cs->host,
"Logical Drive %d is now %s\n",
ldev_num, name ? name : "Invalid");
}
if ((new->soft_errs != old->soft_errs) ||
(new->cmds_failed != old->cmds_failed) ||
(new->deferred_write_errs != old->deferred_write_errs))
shost_printk(KERN_INFO, cs->host,
"Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n",
ldev_num, new->soft_errs,
new->cmds_failed,
new->deferred_write_errs);
if (new->bg_init_active)
myrs_report_progress(cs, ldev_num,
"Background Initialization",
new->bg_init_lba, ldev_size);
else if (new->fg_init_active)
myrs_report_progress(cs, ldev_num,
"Foreground Initialization",
new->fg_init_lba, ldev_size);
else if (new->migration_active)
myrs_report_progress(cs, ldev_num,
"Data Migration",
new->migration_lba, ldev_size);
else if (new->patrol_active)
myrs_report_progress(cs, ldev_num,
"Patrol Operation",
new->patrol_lba, ldev_size);
if (old->bg_init_active && !new->bg_init_active)
shost_printk(KERN_INFO, cs->host,
"Logical Drive %d: Background Initialization %s\n",
ldev_num,
(new->ldev_control.ldev_init_done ?
"Completed" : "Failed"));
}
return status;
}
/**
* myrs_get_pdev_info - executes a "Read Physical Device Information" Command
*/
static unsigned char myrs_get_pdev_info(struct myrs_hba *cs,
unsigned char channel, unsigned char target, unsigned char lun,
struct myrs_pdev_info *pdev_info)
{
struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
dma_addr_t pdev_info_addr;
union myrs_sgl *sgl;
unsigned char status;
pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info,
sizeof(struct myrs_pdev_info),
DMA_FROM_DEVICE);
if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr))
return MYRS_STATUS_FAILED;
mutex_lock(&cs->dcmd_mutex);
myrs_reset_cmd(cmd_blk);
mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
mbox->pdev_info.id = MYRS_DCMD_TAG;
mbox->pdev_info.control.dma_ctrl_to_host = true;
mbox->pdev_info.control.no_autosense = true;
mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info);
mbox->pdev_info.pdev.lun = lun;
mbox->pdev_info.pdev.target = target;
mbox->pdev_info.pdev.channel = channel;
mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID;
sgl = &mbox->pdev_info.dma_addr;
sgl->sge[0].sge_addr = pdev_info_addr;
sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
dev_dbg(&cs->host->shost_gendev,
"Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n",
channel, target, lun);
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
dma_unmap_single(&cs->pdev->dev, pdev_info_addr,
sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE);
return status;
}
/**
* myrs_dev_op - executes a "Device Operation" Command
*/
static unsigned char myrs_dev_op(struct myrs_hba *cs,
enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev)
{
struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
unsigned char status;
mutex_lock(&cs->dcmd_mutex);
myrs_reset_cmd(cmd_blk);
mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL;
mbox->dev_op.id = MYRS_DCMD_TAG;
mbox->dev_op.control.dma_ctrl_to_host = true;
mbox->dev_op.control.no_autosense = true;
mbox->dev_op.ioctl_opcode = opcode;
mbox->dev_op.opdev = opdev;
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
return status;
}
/**
* myrs_translate_pdev - translates a Physical Device Channel and
* TargetID into a Logical Device.
*/
static unsigned char myrs_translate_pdev(struct myrs_hba *cs,
unsigned char channel, unsigned char target, unsigned char lun,
struct myrs_devmap *devmap)
{
struct pci_dev *pdev = cs->pdev;
dma_addr_t devmap_addr;
struct myrs_cmdblk *cmd_blk;
union myrs_cmd_mbox *mbox;
union myrs_sgl *sgl;
unsigned char status;
memset(devmap, 0x0, sizeof(struct myrs_devmap));
devmap_addr = dma_map_single(&pdev->dev, devmap,
sizeof(struct myrs_devmap),
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, devmap_addr))
return MYRS_STATUS_FAILED;
mutex_lock(&cs->dcmd_mutex);
cmd_blk = &cs->dcmd_blk;
mbox = &cmd_blk->mbox;
mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
mbox->pdev_info.control.dma_ctrl_to_host = true;
mbox->pdev_info.control.no_autosense = true;
mbox->pdev_info.dma_size = sizeof(struct myrs_devmap);
mbox->pdev_info.pdev.target = target;
mbox->pdev_info.pdev.channel = channel;
mbox->pdev_info.pdev.lun = lun;
mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV;
sgl = &mbox->pdev_info.dma_addr;
sgl->sge[0].sge_addr = devmap_addr;
sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
dma_unmap_single(&pdev->dev, devmap_addr,
sizeof(struct myrs_devmap), DMA_FROM_DEVICE);
return status;
}
/**
* myrs_get_event - executes a Get Event Command
*/
static unsigned char myrs_get_event(struct myrs_hba *cs,
unsigned int event_num, struct myrs_event *event_buf)
{
struct pci_dev *pdev = cs->pdev;
dma_addr_t event_addr;
struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
union myrs_sgl *sgl;
unsigned char status;
event_addr = dma_map_single(&pdev->dev, event_buf,
sizeof(struct myrs_event), DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, event_addr))
return MYRS_STATUS_FAILED;
mbox->get_event.opcode = MYRS_CMD_OP_IOCTL;
mbox->get_event.dma_size = sizeof(struct myrs_event);
mbox->get_event.evnum_upper = event_num >> 16;
mbox->get_event.ctlr_num = 0;
mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT;
mbox->get_event.evnum_lower = event_num & 0xFFFF;
sgl = &mbox->get_event.dma_addr;
sgl->sge[0].sge_addr = event_addr;
sgl->sge[0].sge_count = mbox->get_event.dma_size;
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
dma_unmap_single(&pdev->dev, event_addr,
sizeof(struct myrs_event), DMA_FROM_DEVICE);
return status;
}
/*
* myrs_get_fwstatus - executes a Get Health Status Command
*/
static unsigned char myrs_get_fwstatus(struct myrs_hba *cs)
{
struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
union myrs_sgl *sgl;
unsigned char status = cmd_blk->status;
myrs_reset_cmd(cmd_blk);
mbox->common.opcode = MYRS_CMD_OP_IOCTL;
mbox->common.id = MYRS_MCMD_TAG;
mbox->common.control.dma_ctrl_to_host = true;
mbox->common.control.no_autosense = true;
mbox->common.dma_size = sizeof(struct myrs_fwstat);
mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS;
sgl = &mbox->common.dma_addr;
sgl->sge[0].sge_addr = cs->fwstat_addr;
sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n");
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
return status;
}
/**
* myrs_enable_mmio_mbox - enables the Memory Mailbox Interface
*/
static bool myrs_enable_mmio_mbox(struct myrs_hba *cs,
enable_mbox_t enable_mbox_fn)
{
void __iomem *base = cs->io_base;
struct pci_dev *pdev = cs->pdev;
union myrs_cmd_mbox *cmd_mbox;
struct myrs_stat_mbox *stat_mbox;
union myrs_cmd_mbox *mbox;
dma_addr_t mbox_addr;
unsigned char status = MYRS_STATUS_FAILED;
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
dev_err(&pdev->dev, "DMA mask out of range\n");
return false;
}
/* Temporary dma mapping, used only in the scope of this function */
mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
&mbox_addr, GFP_KERNEL);
if (dma_mapping_error(&pdev->dev, mbox_addr))
return false;
/* These are the base addresses for the command memory mailbox array */
cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox);
cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size,
&cs->cmd_mbox_addr, GFP_KERNEL);
if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) {
dev_err(&pdev->dev, "Failed to map command mailbox\n");
goto out_free;
}
cs->first_cmd_mbox = cmd_mbox;
cmd_mbox += MYRS_MAX_CMD_MBOX - 1;
cs->last_cmd_mbox = cmd_mbox;
cs->next_cmd_mbox = cs->first_cmd_mbox;
cs->prev_cmd_mbox1 = cs->last_cmd_mbox;
cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1;
/* These are the base addresses for the status memory mailbox array */
cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox);
stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size,
&cs->stat_mbox_addr, GFP_KERNEL);
if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) {
dev_err(&pdev->dev, "Failed to map status mailbox\n");
goto out_free;
}
cs->first_stat_mbox = stat_mbox;
stat_mbox += MYRS_MAX_STAT_MBOX - 1;
cs->last_stat_mbox = stat_mbox;
cs->next_stat_mbox = cs->first_stat_mbox;
cs->fwstat_buf = dma_alloc_coherent(&pdev->dev,
sizeof(struct myrs_fwstat),
&cs->fwstat_addr, GFP_KERNEL);
if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) {
dev_err(&pdev->dev, "Failed to map firmware health buffer\n");
cs->fwstat_buf = NULL;
goto out_free;
}
cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info),
GFP_KERNEL | GFP_DMA);
if (!cs->ctlr_info)
goto out_free;
cs->event_buf = kzalloc(sizeof(struct myrs_event),
GFP_KERNEL | GFP_DMA);
if (!cs->event_buf)
goto out_free;
/* Enable the Memory Mailbox Interface. */
memset(mbox, 0, sizeof(union myrs_cmd_mbox));
mbox->set_mbox.id = 1;
mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL;
mbox->set_mbox.control.no_autosense = true;
mbox->set_mbox.first_cmd_mbox_size_kb =
(MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10;
mbox->set_mbox.first_stat_mbox_size_kb =
(MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10;
mbox->set_mbox.second_cmd_mbox_size_kb = 0;
mbox->set_mbox.second_stat_mbox_size_kb = 0;
mbox->set_mbox.sense_len = 0;
mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX;
mbox->set_mbox.fwstat_buf_size_kb = 1;
mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr;
mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr;
mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr;
status = enable_mbox_fn(base, mbox_addr);
out_free:
dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
mbox, mbox_addr);
if (status != MYRS_STATUS_SUCCESS)
dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n",
status);
return (status == MYRS_STATUS_SUCCESS);
}
/**
* myrs_get_config - reads the Configuration Information
*/
static int myrs_get_config(struct myrs_hba *cs)
{
struct myrs_ctlr_info *info = cs->ctlr_info;
struct Scsi_Host *shost = cs->host;
unsigned char status;
unsigned char model[20];
unsigned char fw_version[12];
int i, model_len;
/* Get data into dma-able area, then copy into permanent location */
mutex_lock(&cs->cinfo_mutex);
status = myrs_get_ctlr_info(cs);
mutex_unlock(&cs->cinfo_mutex);
if (status != MYRS_STATUS_SUCCESS) {
shost_printk(KERN_ERR, shost,
"Failed to get controller information\n");
return -ENODEV;
}
/* Initialize the Controller Model Name and Full Model Name fields. */
model_len = sizeof(info->ctlr_name);
if (model_len > sizeof(model)-1)
model_len = sizeof(model)-1;
memcpy(model, info->ctlr_name, model_len);
model_len--;
while (model[model_len] == ' ' || model[model_len] == '\0')
model_len--;
model[++model_len] = '\0';
strcpy(cs->model_name, "DAC960 ");
strcat(cs->model_name, model);
/* Initialize the Controller Firmware Version field. */
sprintf(fw_version, "%d.%02d-%02d",
info->fw_major_version, info->fw_minor_version,
info->fw_turn_number);
if (info->fw_major_version == 6 &&
info->fw_minor_version == 0 &&
info->fw_turn_number < 1) {
shost_printk(KERN_WARNING, shost,
"FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n"
"STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n"
"PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
fw_version);
return -ENODEV;
}
/* Initialize the Controller Channels and Targets. */
shost->max_channel = info->physchan_present + info->virtchan_present;
shost->max_id = info->max_targets[0];
for (i = 1; i < 16; i++) {
if (!info->max_targets[i])
continue;
if (shost->max_id < info->max_targets[i])
shost->max_id = info->max_targets[i];
}
/*
* Initialize the Controller Queue Depth, Driver Queue Depth,
* Logical Drive Count, Maximum Blocks per Command, Controller
* Scatter/Gather Limit, and Driver Scatter/Gather Limit.
* The Driver Queue Depth must be at most three less than
* the Controller Queue Depth; tag '1' is reserved for
* direct commands, and tag '2' for monitoring commands.
*/
shost->can_queue = info->max_tcq - 3;
if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3)
shost->can_queue = MYRS_MAX_CMD_MBOX - 3;
shost->max_sectors = info->max_transfer_size;
shost->sg_tablesize = info->max_sge;
if (shost->sg_tablesize > MYRS_SG_LIMIT)
shost->sg_tablesize = MYRS_SG_LIMIT;
shost_printk(KERN_INFO, shost,
"Configuring %s PCI RAID Controller\n", model);
shost_printk(KERN_INFO, shost,
" Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
fw_version, info->physchan_present, info->mem_size_mb);
shost_printk(KERN_INFO, shost,
" Controller Queue Depth: %d, Maximum Blocks per Command: %d\n",
shost->can_queue, shost->max_sectors);
shost_printk(KERN_INFO, shost,
" Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n",
shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT);
for (i = 0; i < info->physchan_max; i++) {
if (!info->max_targets[i])
continue;
shost_printk(KERN_INFO, shost,
" Device Channel %d: max %d devices\n",
i, info->max_targets[i]);
}
shost_printk(KERN_INFO, shost,
" Physical: %d/%d channels, %d disks, %d devices\n",
info->physchan_present, info->physchan_max,
info->pdisk_present, info->pdev_present);
shost_printk(KERN_INFO, shost,
" Logical: %d/%d channels, %d disks\n",
info->virtchan_present, info->virtchan_max,
info->ldev_present);
return 0;
}
/**
* myrs_log_event - prints a Controller Event message
*/
static struct {
int ev_code;
unsigned char *ev_msg;
} myrs_ev_list[] = {
/* Physical Device Events (0x0000 - 0x007F) */
{ 0x0001, "P Online" },
{ 0x0002, "P Standby" },
{ 0x0005, "P Automatic Rebuild Started" },
{ 0x0006, "P Manual Rebuild Started" },
{ 0x0007, "P Rebuild Completed" },
{ 0x0008, "P Rebuild Cancelled" },
{ 0x0009, "P Rebuild Failed for Unknown Reasons" },
{ 0x000A, "P Rebuild Failed due to New Physical Device" },
{ 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
{ 0x000C, "S Offline" },
{ 0x000D, "P Found" },
{ 0x000E, "P Removed" },
{ 0x000F, "P Unconfigured" },
{ 0x0010, "P Expand Capacity Started" },
{ 0x0011, "P Expand Capacity Completed" },
{ 0x0012, "P Expand Capacity Failed" },
{ 0x0013, "P Command Timed Out" },
{ 0x0014, "P Command Aborted" },
{ 0x0015, "P Command Retried" },
{ 0x0016, "P Parity Error" },
{ 0x0017, "P Soft Error" },
{ 0x0018, "P Miscellaneous Error" },
{ 0x0019, "P Reset" },
{ 0x001A, "P Active Spare Found" },
{ 0x001B, "P Warm Spare Found" },
{ 0x001C, "S Sense Data Received" },
{ 0x001D, "P Initialization Started" },
{ 0x001E, "P Initialization Completed" },
{ 0x001F, "P Initialization Failed" },
{ 0x0020, "P Initialization Cancelled" },
{ 0x0021, "P Failed because Write Recovery Failed" },
{ 0x0022, "P Failed because SCSI Bus Reset Failed" },
{ 0x0023, "P Failed because of Double Check Condition" },
{ 0x0024, "P Failed because Device Cannot Be Accessed" },
{ 0x0025, "P Failed because of Gross Error on SCSI Processor" },
{ 0x0026, "P Failed because of Bad Tag from Device" },
{ 0x0027, "P Failed because of Command Timeout" },
{ 0x0028, "P Failed because of System Reset" },
{ 0x0029, "P Failed because of Busy Status or Parity Error" },
{ 0x002A, "P Failed because Host Set Device to Failed State" },
{ 0x002B, "P Failed because of Selection Timeout" },
{ 0x002C, "P Failed because of SCSI Bus Phase Error" },
{ 0x002D, "P Failed because Device Returned Unknown Status" },
{ 0x002E, "P Failed because Device Not Ready" },
{ 0x002F, "P Failed because Device Not Found at Startup" },
{ 0x0030, "P Failed because COD Write Operation Failed" },
{ 0x0031, "P Failed because BDT Write Operation Failed" },
{ 0x0039, "P Missing at Startup" },
{ 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
{ 0x003C, "P Temporarily Offline Device Automatically Made Online" },
{ 0x003D, "P Standby Rebuild Started" },
/* Logical Device Events (0x0080 - 0x00FF) */
{ 0x0080, "M Consistency Check Started" },
{ 0x0081, "M Consistency Check Completed" },
{ 0x0082, "M Consistency Check Cancelled" },
{ 0x0083, "M Consistency Check Completed With Errors" },
{ 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
{ 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
{ 0x0086, "L Offline" },
{ 0x0087, "L Critical" },
{ 0x0088, "L Online" },
{ 0x0089, "M Automatic Rebuild Started" },
{ 0x008A, "M Manual Rebuild Started" },
{ 0x008B, "M Rebuild Completed" },
{ 0x008C, "M Rebuild Cancelled" },
{ 0x008D, "M Rebuild Failed for Unknown Reasons" },
{ 0x008E, "M Rebuild Failed due to New Physical Device" },
{ 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
{ 0x0090, "M Initialization Started" },
{ 0x0091, "M Initialization Completed" },
{ 0x0092, "M Initialization Cancelled" },
{ 0x0093, "M Initialization Failed" },
{ 0x0094, "L Found" },
{ 0x0095, "L Deleted" },
{ 0x0096, "M Expand Capacity Started" },
{ 0x0097, "M Expand Capacity Completed" },
{ 0x0098, "M Expand Capacity Failed" },
{ 0x0099, "L Bad Block Found" },
{ 0x009A, "L Size Changed" },
{ 0x009B, "L Type Changed" },
{ 0x009C, "L Bad Data Block Found" },
{ 0x009E, "L Read of Data Block in BDT" },
{ 0x009F, "L Write Back Data for Disk Block Lost" },
{ 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
{ 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
{ 0x00A2, "L Standby Rebuild Started" },
/* Fault Management Events (0x0100 - 0x017F) */
{ 0x0140, "E Fan %d Failed" },
{ 0x0141, "E Fan %d OK" },
{ 0x0142, "E Fan %d Not Present" },
{ 0x0143, "E Power Supply %d Failed" },
{ 0x0144, "E Power Supply %d OK" },
{ 0x0145, "E Power Supply %d Not Present" },
{ 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
{ 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
{ 0x0148, "E Temperature Sensor %d Temperature Normal" },
{ 0x0149, "E Temperature Sensor %d Not Present" },
{ 0x014A, "E Enclosure Management Unit %d Access Critical" },
{ 0x014B, "E Enclosure Management Unit %d Access OK" },
{ 0x014C, "E Enclosure Management Unit %d Access Offline" },
/* Controller Events (0x0180 - 0x01FF) */
{ 0x0181, "C Cache Write Back Error" },
{ 0x0188, "C Battery Backup Unit Found" },
{ 0x0189, "C Battery Backup Unit Charge Level Low" },
{ 0x018A, "C Battery Backup Unit Charge Level OK" },
{ 0x0193, "C Installation Aborted" },
{ 0x0195, "C Battery Backup Unit Physically Removed" },
{ 0x0196, "C Memory Error During Warm Boot" },
{ 0x019E, "C Memory Soft ECC Error Corrected" },
{ 0x019F, "C Memory Hard ECC Error Corrected" },
{ 0x01A2, "C Battery Backup Unit Failed" },
{ 0x01AB, "C Mirror Race Recovery Failed" },
{ 0x01AC, "C Mirror Race on Critical Drive" },
/* Controller Internal Processor Events */
{ 0x0380, "C Internal Controller Hung" },
{ 0x0381, "C Internal Controller Firmware Breakpoint" },
{ 0x0390, "C Internal Controller i960 Processor Specific Error" },
{ 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
{ 0, "" }
};
static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev)
{
unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE];
int ev_idx = 0, ev_code;
unsigned char ev_type, *ev_msg;
struct Scsi_Host *shost = cs->host;
struct scsi_device *sdev;
struct scsi_sense_hdr sshdr = {0};
unsigned char sense_info[4];
unsigned char cmd_specific[4];
if (ev->ev_code == 0x1C) {
if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) {
memset(&sshdr, 0x0, sizeof(sshdr));
memset(sense_info, 0x0, sizeof(sense_info));
memset(cmd_specific, 0x0, sizeof(cmd_specific));
} else {
memcpy(sense_info, &ev->sense_data[3], 4);
memcpy(cmd_specific, &ev->sense_data[7], 4);
}
}
if (sshdr.sense_key == VENDOR_SPECIFIC &&
(sshdr.asc == 0x80 || sshdr.asc == 0x81))
ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq);
while (true) {
ev_code = myrs_ev_list[ev_idx].ev_code;
if (ev_code == ev->ev_code || ev_code == 0)
break;
ev_idx++;
}
ev_type = myrs_ev_list[ev_idx].ev_msg[0];
ev_msg = &myrs_ev_list[ev_idx].ev_msg[2];
if (ev_code == 0) {
shost_printk(KERN_WARNING, shost,
"Unknown Controller Event Code %04X\n",
ev->ev_code);
return;
}
switch (ev_type) {
case 'P':
sdev = scsi_device_lookup(shost, ev->channel,
ev->target, 0);
sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n",
ev->ev_seq, ev_msg);
if (sdev && sdev->hostdata &&
sdev->channel < cs->ctlr_info->physchan_present) {
struct myrs_pdev_info *pdev_info = sdev->hostdata;
switch (ev->ev_code) {
case 0x0001:
case 0x0007:
pdev_info->dev_state = MYRS_DEVICE_ONLINE;
break;
case 0x0002:
pdev_info->dev_state = MYRS_DEVICE_STANDBY;
break;
case 0x000C:
pdev_info->dev_state = MYRS_DEVICE_OFFLINE;
break;
case 0x000E:
pdev_info->dev_state = MYRS_DEVICE_MISSING;
break;
case 0x000F:
pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED;
break;
}
}
break;
case 'L':
shost_printk(KERN_INFO, shost,
"event %d: Logical Drive %d %s\n",
ev->ev_seq, ev->lun, ev_msg);
cs->needs_update = true;
break;
case 'M':
shost_printk(KERN_INFO, shost,
"event %d: Logical Drive %d %s\n",
ev->ev_seq, ev->lun, ev_msg);
cs->needs_update = true;
break;
case 'S':
if (sshdr.sense_key == NO_SENSE ||
(sshdr.sense_key == NOT_READY &&
sshdr.asc == 0x04 && (sshdr.ascq == 0x01 ||
sshdr.ascq == 0x02)))
break;
shost_printk(KERN_INFO, shost,
"event %d: Physical Device %d:%d %s\n",
ev->ev_seq, ev->channel, ev->target, ev_msg);
shost_printk(KERN_INFO, shost,
"Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
ev->channel, ev->target,
sshdr.sense_key, sshdr.asc, sshdr.ascq);
shost_printk(KERN_INFO, shost,
"Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n",
ev->channel, ev->target,
sense_info[0], sense_info[1],
sense_info[2], sense_info[3],
cmd_specific[0], cmd_specific[1],
cmd_specific[2], cmd_specific[3]);
break;
case 'E':
if (cs->disable_enc_msg)
break;
sprintf(msg_buf, ev_msg, ev->lun);
shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n",
ev->ev_seq, ev->target, msg_buf);
break;
case 'C':
shost_printk(KERN_INFO, shost, "event %d: Controller %s\n",
ev->ev_seq, ev_msg);
break;
default:
shost_printk(KERN_INFO, shost,
"event %d: Unknown Event Code %04X\n",
ev->ev_seq, ev->ev_code);
break;
}
}
/*
* SCSI sysfs interface functions
*/
static ssize_t raid_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
int ret;
if (!sdev->hostdata)
return snprintf(buf, 16, "Unknown\n");
if (sdev->channel >= cs->ctlr_info->physchan_present) {
struct myrs_ldev_info *ldev_info = sdev->hostdata;
const char *name;
name = myrs_devstate_name(ldev_info->dev_state);
if (name)
ret = snprintf(buf, 32, "%s\n", name);
else
ret = snprintf(buf, 32, "Invalid (%02X)\n",
ldev_info->dev_state);
} else {
struct myrs_pdev_info *pdev_info;
const char *name;
pdev_info = sdev->hostdata;
name = myrs_devstate_name(pdev_info->dev_state);
if (name)
ret = snprintf(buf, 32, "%s\n", name);
else
ret = snprintf(buf, 32, "Invalid (%02X)\n",
pdev_info->dev_state);
}
return ret;
}
static ssize_t raid_state_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_cmdblk *cmd_blk;
union myrs_cmd_mbox *mbox;
enum myrs_devstate new_state;
unsigned short ldev_num;
unsigned char status;
if (!strncmp(buf, "offline", 7) ||
!strncmp(buf, "kill", 4))
new_state = MYRS_DEVICE_OFFLINE;
else if (!strncmp(buf, "online", 6))
new_state = MYRS_DEVICE_ONLINE;
else if (!strncmp(buf, "standby", 7))
new_state = MYRS_DEVICE_STANDBY;
else
return -EINVAL;
if (sdev->channel < cs->ctlr_info->physchan_present) {
struct myrs_pdev_info *pdev_info = sdev->hostdata;
struct myrs_devmap *pdev_devmap =
(struct myrs_devmap *)&pdev_info->rsvd13;
if (pdev_info->dev_state == new_state) {
sdev_printk(KERN_INFO, sdev,
"Device already in %s\n",
myrs_devstate_name(new_state));
return count;
}
status = myrs_translate_pdev(cs, sdev->channel, sdev->id,
sdev->lun, pdev_devmap);
if (status != MYRS_STATUS_SUCCESS)
return -ENXIO;
ldev_num = pdev_devmap->ldev_num;
} else {
struct myrs_ldev_info *ldev_info = sdev->hostdata;
if (ldev_info->dev_state == new_state) {
sdev_printk(KERN_INFO, sdev,
"Device already in %s\n",
myrs_devstate_name(new_state));
return count;
}
ldev_num = ldev_info->ldev_num;
}
mutex_lock(&cs->dcmd_mutex);
cmd_blk = &cs->dcmd_blk;
myrs_reset_cmd(cmd_blk);
mbox = &cmd_blk->mbox;
mbox->common.opcode = MYRS_CMD_OP_IOCTL;
mbox->common.id = MYRS_DCMD_TAG;
mbox->common.control.dma_ctrl_to_host = true;
mbox->common.control.no_autosense = true;
mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE;
mbox->set_devstate.state = new_state;
mbox->set_devstate.ldev.ldev_num = ldev_num;
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
if (status == MYRS_STATUS_SUCCESS) {
if (sdev->channel < cs->ctlr_info->physchan_present) {
struct myrs_pdev_info *pdev_info = sdev->hostdata;
pdev_info->dev_state = new_state;
} else {
struct myrs_ldev_info *ldev_info = sdev->hostdata;
ldev_info->dev_state = new_state;
}
sdev_printk(KERN_INFO, sdev,
"Set device state to %s\n",
myrs_devstate_name(new_state));
return count;
}
sdev_printk(KERN_INFO, sdev,
"Failed to set device state to %s, status 0x%02x\n",
myrs_devstate_name(new_state), status);
return -EINVAL;
}
static DEVICE_ATTR_RW(raid_state);
static ssize_t raid_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
const char *name = NULL;
if (!sdev->hostdata)
return snprintf(buf, 16, "Unknown\n");
if (sdev->channel >= cs->ctlr_info->physchan_present) {
struct myrs_ldev_info *ldev_info;
ldev_info = sdev->hostdata;
name = myrs_raid_level_name(ldev_info->raid_level);
if (!name)
return snprintf(buf, 32, "Invalid (%02X)\n",
ldev_info->dev_state);
} else
name = myrs_raid_level_name(MYRS_RAID_PHYSICAL);
return snprintf(buf, 32, "%s\n", name);
}
static DEVICE_ATTR_RO(raid_level);
static ssize_t rebuild_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info;
unsigned short ldev_num;
unsigned char status;
if (sdev->channel < cs->ctlr_info->physchan_present)
return snprintf(buf, 32, "physical device - not rebuilding\n");
ldev_info = sdev->hostdata;
ldev_num = ldev_info->ldev_num;
status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
if (status != MYRS_STATUS_SUCCESS) {
sdev_printk(KERN_INFO, sdev,
"Failed to get device information, status 0x%02x\n",
status);
return -EIO;
}
if (ldev_info->rbld_active) {
return snprintf(buf, 32, "rebuilding block %zu of %zu\n",
(size_t)ldev_info->rbld_lba,
(size_t)ldev_info->cfg_devsize);
} else
return snprintf(buf, 32, "not rebuilding\n");
}
static ssize_t rebuild_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info;
struct myrs_cmdblk *cmd_blk;
union myrs_cmd_mbox *mbox;
unsigned short ldev_num;
unsigned char status;
int rebuild, ret;
if (sdev->channel < cs->ctlr_info->physchan_present)
return -EINVAL;
ldev_info = sdev->hostdata;
if (!ldev_info)
return -ENXIO;
ldev_num = ldev_info->ldev_num;
ret = kstrtoint(buf, 0, &rebuild);
if (ret)
return ret;
status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
if (status != MYRS_STATUS_SUCCESS) {
sdev_printk(KERN_INFO, sdev,
"Failed to get device information, status 0x%02x\n",
status);
return -EIO;
}
if (rebuild && ldev_info->rbld_active) {
sdev_printk(KERN_INFO, sdev,
"Rebuild Not Initiated; already in progress\n");
return -EALREADY;
}
if (!rebuild && !ldev_info->rbld_active) {
sdev_printk(KERN_INFO, sdev,
"Rebuild Not Cancelled; no rebuild in progress\n");
return count;
}
mutex_lock(&cs->dcmd_mutex);
cmd_blk = &cs->dcmd_blk;
myrs_reset_cmd(cmd_blk);
mbox = &cmd_blk->mbox;
mbox->common.opcode = MYRS_CMD_OP_IOCTL;
mbox->common.id = MYRS_DCMD_TAG;
mbox->common.control.dma_ctrl_to_host = true;
mbox->common.control.no_autosense = true;
if (rebuild) {
mbox->ldev_info.ldev.ldev_num = ldev_num;
mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START;
} else {
mbox->ldev_info.ldev.ldev_num = ldev_num;
mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP;
}
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
if (status) {
sdev_printk(KERN_INFO, sdev,
"Rebuild Not %s, status 0x%02x\n",
rebuild ? "Initiated" : "Cancelled", status);
ret = -EIO;
} else {
sdev_printk(KERN_INFO, sdev, "Rebuild %s\n",
rebuild ? "Initiated" : "Cancelled");
ret = count;
}
return ret;
}
static DEVICE_ATTR_RW(rebuild);
static ssize_t consistency_check_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info;
unsigned short ldev_num;
unsigned char status;
if (sdev->channel < cs->ctlr_info->physchan_present)
return snprintf(buf, 32, "physical device - not checking\n");
ldev_info = sdev->hostdata;
if (!ldev_info)
return -ENXIO;
ldev_num = ldev_info->ldev_num;
status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
if (ldev_info->cc_active)
return snprintf(buf, 32, "checking block %zu of %zu\n",
(size_t)ldev_info->cc_lba,
(size_t)ldev_info->cfg_devsize);
else
return snprintf(buf, 32, "not checking\n");
}
static ssize_t consistency_check_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info;
struct myrs_cmdblk *cmd_blk;
union myrs_cmd_mbox *mbox;
unsigned short ldev_num;
unsigned char status;
int check, ret;
if (sdev->channel < cs->ctlr_info->physchan_present)
return -EINVAL;
ldev_info = sdev->hostdata;
if (!ldev_info)
return -ENXIO;
ldev_num = ldev_info->ldev_num;
ret = kstrtoint(buf, 0, &check);
if (ret)
return ret;
status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
if (status != MYRS_STATUS_SUCCESS) {
sdev_printk(KERN_INFO, sdev,
"Failed to get device information, status 0x%02x\n",
status);
return -EIO;
}
if (check && ldev_info->cc_active) {
sdev_printk(KERN_INFO, sdev,
"Consistency Check Not Initiated; "
"already in progress\n");
return -EALREADY;
}
if (!check && !ldev_info->cc_active) {
sdev_printk(KERN_INFO, sdev,
"Consistency Check Not Cancelled; "
"check not in progress\n");
return count;
}
mutex_lock(&cs->dcmd_mutex);
cmd_blk = &cs->dcmd_blk;
myrs_reset_cmd(cmd_blk);
mbox = &cmd_blk->mbox;
mbox->common.opcode = MYRS_CMD_OP_IOCTL;
mbox->common.id = MYRS_DCMD_TAG;
mbox->common.control.dma_ctrl_to_host = true;
mbox->common.control.no_autosense = true;
if (check) {
mbox->cc.ldev.ldev_num = ldev_num;
mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START;
mbox->cc.restore_consistency = true;
mbox->cc.initialized_area_only = false;
} else {
mbox->cc.ldev.ldev_num = ldev_num;
mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP;
}
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
if (status != MYRS_STATUS_SUCCESS) {
sdev_printk(KERN_INFO, sdev,
"Consistency Check Not %s, status 0x%02x\n",
check ? "Initiated" : "Cancelled", status);
ret = -EIO;
} else {
sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n",
check ? "Initiated" : "Cancelled");
ret = count;
}
return ret;
}
static DEVICE_ATTR_RW(consistency_check);
static struct device_attribute *myrs_sdev_attrs[] = {
&dev_attr_consistency_check,
&dev_attr_rebuild,
&dev_attr_raid_state,
&dev_attr_raid_level,
NULL,
};
static ssize_t serial_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
char serial[17];
memcpy(serial, cs->ctlr_info->serial_number, 16);
serial[16] = '\0';
return snprintf(buf, 16, "%s\n", serial);
}
static DEVICE_ATTR_RO(serial);
static ssize_t ctlr_num_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
return snprintf(buf, 20, "%d\n", cs->host->host_no);
}
static DEVICE_ATTR_RO(ctlr_num);
static struct myrs_cpu_type_tbl {
enum myrs_cpu_type type;
char *name;
} myrs_cpu_type_names[] = {
{ MYRS_CPUTYPE_i960CA, "i960CA" },
{ MYRS_CPUTYPE_i960RD, "i960RD" },
{ MYRS_CPUTYPE_i960RN, "i960RN" },
{ MYRS_CPUTYPE_i960RP, "i960RP" },
{ MYRS_CPUTYPE_NorthBay, "NorthBay" },
{ MYRS_CPUTYPE_StrongArm, "StrongARM" },
{ MYRS_CPUTYPE_i960RM, "i960RM" },
};
static ssize_t processor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
struct myrs_cpu_type_tbl *tbl;
const char *first_processor = NULL;
const char *second_processor = NULL;
struct myrs_ctlr_info *info = cs->ctlr_info;
ssize_t ret;
int i;
if (info->cpu[0].cpu_count) {
tbl = myrs_cpu_type_names;
for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
if (tbl[i].type == info->cpu[0].cpu_type) {
first_processor = tbl[i].name;
break;
}
}
}
if (info->cpu[1].cpu_count) {
tbl = myrs_cpu_type_names;
for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
if (tbl[i].type == info->cpu[1].cpu_type) {
second_processor = tbl[i].name;
break;
}
}
}
if (first_processor && second_processor)
ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n"
"2: %s (%s, %d cpus)\n",
info->cpu[0].cpu_name,
first_processor, info->cpu[0].cpu_count,
info->cpu[1].cpu_name,
second_processor, info->cpu[1].cpu_count);
else if (first_processor && !second_processor)
ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n",
info->cpu[0].cpu_name,
first_processor, info->cpu[0].cpu_count);
else if (!first_processor && second_processor)
ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n",
info->cpu[1].cpu_name,
second_processor, info->cpu[1].cpu_count);
else
ret = snprintf(buf, 64, "1: absent\n2: absent\n");
return ret;
}
static DEVICE_ATTR_RO(processor);
static ssize_t model_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
return snprintf(buf, 28, "%s\n", cs->model_name);
}
static DEVICE_ATTR_RO(model);
static ssize_t ctlr_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type);
}
static DEVICE_ATTR_RO(ctlr_type);
static ssize_t cache_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb);
}
static DEVICE_ATTR_RO(cache_size);
static ssize_t firmware_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
return snprintf(buf, 16, "%d.%02d-%02d\n",
cs->ctlr_info->fw_major_version,
cs->ctlr_info->fw_minor_version,
cs->ctlr_info->fw_turn_number);
}
static DEVICE_ATTR_RO(firmware);
static ssize_t discovery_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
struct myrs_cmdblk *cmd_blk;
union myrs_cmd_mbox *mbox;
unsigned char status;
mutex_lock(&cs->dcmd_mutex);
cmd_blk = &cs->dcmd_blk;
myrs_reset_cmd(cmd_blk);
mbox = &cmd_blk->mbox;
mbox->common.opcode = MYRS_CMD_OP_IOCTL;
mbox->common.id = MYRS_DCMD_TAG;
mbox->common.control.dma_ctrl_to_host = true;
mbox->common.control.no_autosense = true;
mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY;
myrs_exec_cmd(cs, cmd_blk);
status = cmd_blk->status;
mutex_unlock(&cs->dcmd_mutex);
if (status != MYRS_STATUS_SUCCESS) {
shost_printk(KERN_INFO, shost,
"Discovery Not Initiated, status %02X\n",
status);
return -EINVAL;
}
shost_printk(KERN_INFO, shost, "Discovery Initiated\n");
cs->next_evseq = 0;
cs->needs_update = true;
queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
flush_delayed_work(&cs->monitor_work);
shost_printk(KERN_INFO, shost, "Discovery Completed\n");
return count;
}
static DEVICE_ATTR_WO(discovery);
static ssize_t flush_cache_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
unsigned char status;
status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA,
MYRS_RAID_CONTROLLER);
if (status == MYRS_STATUS_SUCCESS) {
shost_printk(KERN_INFO, shost, "Cache Flush Completed\n");
return count;
}
shost_printk(KERN_INFO, shost,
"Cache Flush failed, status 0x%02x\n", status);
return -EIO;
}
static DEVICE_ATTR_WO(flush_cache);
static ssize_t disable_enclosure_messages_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct myrs_hba *cs = shost_priv(shost);
return snprintf(buf, 3, "%d\n", cs->disable_enc_msg);
}
static ssize_t disable_enclosure_messages_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
int value, ret;
ret = kstrtoint(buf, 0, &value);
if (ret)
return ret;
if (value > 2)
return -EINVAL;
cs->disable_enc_msg = value;
return count;
}
static DEVICE_ATTR_RW(disable_enclosure_messages);
static struct device_attribute *myrs_shost_attrs[] = {
&dev_attr_serial,
&dev_attr_ctlr_num,
&dev_attr_processor,
&dev_attr_model,
&dev_attr_ctlr_type,
&dev_attr_cache_size,
&dev_attr_firmware,
&dev_attr_discovery,
&dev_attr_flush_cache,
&dev_attr_disable_enclosure_messages,
NULL,
};
/*
* SCSI midlayer interface
*/
int myrs_host_reset(struct scsi_cmnd *scmd)
{
struct Scsi_Host *shost = scmd->device->host;
struct myrs_hba *cs = shost_priv(shost);
cs->reset(cs->io_base);
return SUCCESS;
}
static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd,
struct myrs_ldev_info *ldev_info)
{
unsigned char modes[32], *mode_pg;
bool dbd;
size_t mode_len;
dbd = (scmd->cmnd[1] & 0x08) == 0x08;
if (dbd) {
mode_len = 24;
mode_pg = &modes[4];
} else {
mode_len = 32;
mode_pg = &modes[12];
}
memset(modes, 0, sizeof(modes));
modes[0] = mode_len - 1;
modes[2] = 0x10; /* Enable FUA */
if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO)
modes[2] |= 0x80;
if (!dbd) {
unsigned char *block_desc = &modes[4];
modes[3] = 8;
put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]);
put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]);
}
mode_pg[0] = 0x08;
mode_pg[1] = 0x12;
if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED)
mode_pg[2] |= 0x01;
if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
mode_pg[2] |= 0x04;
if (ldev_info->cacheline_size) {
mode_pg[2] |= 0x08;
put_unaligned_be16(1 << ldev_info->cacheline_size,
&mode_pg[14]);
}
scsi_sg_copy_from_buffer(scmd, modes, mode_len);
}
static int myrs_queuecommand(struct Scsi_Host *shost,
struct scsi_cmnd *scmd)
{
struct myrs_hba *cs = shost_priv(shost);
struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd);
union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
struct scsi_device *sdev = scmd->device;
union myrs_sgl *hw_sge;
dma_addr_t sense_addr;
struct scatterlist *sgl;
unsigned long flags, timeout;
int nsge;
if (!scmd->device->hostdata) {
scmd->result = (DID_NO_CONNECT << 16);
scmd->scsi_done(scmd);
return 0;
}
switch (scmd->cmnd[0]) {
case REPORT_LUNS:
scsi_build_sense_buffer(0, scmd->sense_buffer, ILLEGAL_REQUEST,
0x20, 0x0);
scmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
scmd->scsi_done(scmd);
return 0;
case MODE_SENSE:
if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
struct myrs_ldev_info *ldev_info = sdev->hostdata;
if ((scmd->cmnd[2] & 0x3F) != 0x3F &&
(scmd->cmnd[2] & 0x3F) != 0x08) {
/* Illegal request, invalid field in CDB */
scsi_build_sense_buffer(0, scmd->sense_buffer,
ILLEGAL_REQUEST, 0x24, 0);
scmd->result = (DRIVER_SENSE << 24) |
SAM_STAT_CHECK_CONDITION;
} else {
myrs_mode_sense(cs, scmd, ldev_info);
scmd->result = (DID_OK << 16);
}
scmd->scsi_done(scmd);
return 0;
}
break;
}
myrs_reset_cmd(cmd_blk);
cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC,
&sense_addr);
if (!cmd_blk->sense)
return SCSI_MLQUEUE_HOST_BUSY;
cmd_blk->sense_addr = sense_addr;
timeout = scmd->request->timeout;
if (scmd->cmd_len <= 10) {
if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
struct myrs_ldev_info *ldev_info = sdev->hostdata;
mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10;
mbox->SCSI_10.pdev.lun = ldev_info->lun;
mbox->SCSI_10.pdev.target = ldev_info->target;
mbox->SCSI_10.pdev.channel = ldev_info->channel;
mbox->SCSI_10.pdev.ctlr = 0;
} else {
mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU;
mbox->SCSI_10.pdev.lun = sdev->lun;
mbox->SCSI_10.pdev.target = sdev->id;
mbox->SCSI_10.pdev.channel = sdev->channel;
}
mbox->SCSI_10.id = scmd->request->tag + 3;
mbox->SCSI_10.control.dma_ctrl_to_host =
(scmd->sc_data_direction == DMA_FROM_DEVICE);
if (scmd->request->cmd_flags & REQ_FUA)
mbox->SCSI_10.control.fua = true;
mbox->SCSI_10.dma_size = scsi_bufflen(scmd);
mbox->SCSI_10.sense_addr = cmd_blk->sense_addr;
mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE;
mbox->SCSI_10.cdb_len = scmd->cmd_len;
if (timeout > 60) {
mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
mbox->SCSI_10.tmo.tmo_val = timeout / 60;
} else {
mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
mbox->SCSI_10.tmo.tmo_val = timeout;
}
memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len);
hw_sge = &mbox->SCSI_10.dma_addr;
cmd_blk->dcdb = NULL;
} else {
dma_addr_t dcdb_dma;
cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC,
&dcdb_dma);
if (!cmd_blk->dcdb) {
dma_pool_free(cs->sense_pool, cmd_blk->sense,
cmd_blk->sense_addr);
cmd_blk->sense = NULL;
cmd_blk->sense_addr = 0;
return SCSI_MLQUEUE_HOST_BUSY;
}
cmd_blk->dcdb_dma = dcdb_dma;
if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
struct myrs_ldev_info *ldev_info = sdev->hostdata;
mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256;
mbox->SCSI_255.pdev.lun = ldev_info->lun;
mbox->SCSI_255.pdev.target = ldev_info->target;
mbox->SCSI_255.pdev.channel = ldev_info->channel;
mbox->SCSI_255.pdev.ctlr = 0;
} else {
mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU;
mbox->SCSI_255.pdev.lun = sdev->lun;
mbox->SCSI_255.pdev.target = sdev->id;
mbox->SCSI_255.pdev.channel = sdev->channel;
}
mbox->SCSI_255.id = scmd->request->tag + 3;
mbox->SCSI_255.control.dma_ctrl_to_host =
(scmd->sc_data_direction == DMA_FROM_DEVICE);
if (scmd->request->cmd_flags & REQ_FUA)
mbox->SCSI_255.control.fua = true;
mbox->SCSI_255.dma_size = scsi_bufflen(scmd);
mbox->SCSI_255.sense_addr = cmd_blk->sense_addr;
mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE;
mbox->SCSI_255.cdb_len = scmd->cmd_len;
mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma;
if (timeout > 60) {
mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
mbox->SCSI_255.tmo.tmo_val = timeout / 60;
} else {
mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
mbox->SCSI_255.tmo.tmo_val = timeout;
}
memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len);
hw_sge = &mbox->SCSI_255.dma_addr;
}
if (scmd->sc_data_direction == DMA_NONE)
goto submit;
nsge = scsi_dma_map(scmd);
if (nsge == 1) {
sgl = scsi_sglist(scmd);
hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl);
hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl);
} else {
struct myrs_sge *hw_sgl;
dma_addr_t hw_sgl_addr;
int i;
if (nsge > 2) {
hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC,
&hw_sgl_addr);
if (WARN_ON(!hw_sgl)) {
if (cmd_blk->dcdb) {
dma_pool_free(cs->dcdb_pool,
cmd_blk->dcdb,
cmd_blk->dcdb_dma);
cmd_blk->dcdb = NULL;
cmd_blk->dcdb_dma = 0;
}
dma_pool_free(cs->sense_pool,
cmd_blk->sense,
cmd_blk->sense_addr);
cmd_blk->sense = NULL;
cmd_blk->sense_addr = 0;
return SCSI_MLQUEUE_HOST_BUSY;
}
cmd_blk->sgl = hw_sgl;
cmd_blk->sgl_addr = hw_sgl_addr;
if (scmd->cmd_len <= 10)
mbox->SCSI_10.control.add_sge_mem = true;
else
mbox->SCSI_255.control.add_sge_mem = true;
hw_sge->ext.sge0_len = nsge;
hw_sge->ext.sge0_addr = cmd_blk->sgl_addr;
} else
hw_sgl = hw_sge->sge;
scsi_for_each_sg(scmd, sgl, nsge, i) {
if (WARN_ON(!hw_sgl)) {
scsi_dma_unmap(scmd);
scmd->result = (DID_ERROR << 16);
scmd->scsi_done(scmd);
return 0;
}
hw_sgl->sge_addr = (u64)sg_dma_address(sgl);
hw_sgl->sge_count = (u64)sg_dma_len(sgl);
hw_sgl++;
}
}
submit:
spin_lock_irqsave(&cs->queue_lock, flags);
myrs_qcmd(cs, cmd_blk);
spin_unlock_irqrestore(&cs->queue_lock, flags);
return 0;
}
static unsigned short myrs_translate_ldev(struct myrs_hba *cs,
struct scsi_device *sdev)
{
unsigned short ldev_num;
unsigned int chan_offset =
sdev->channel - cs->ctlr_info->physchan_present;
ldev_num = sdev->id + chan_offset * sdev->host->max_id;
return ldev_num;
}
static int myrs_slave_alloc(struct scsi_device *sdev)
{
struct myrs_hba *cs = shost_priv(sdev->host);
unsigned char status;
if (sdev->channel > sdev->host->max_channel)
return 0;
if (sdev->channel >= cs->ctlr_info->physchan_present) {
struct myrs_ldev_info *ldev_info;
unsigned short ldev_num;
if (sdev->lun > 0)
return -ENXIO;
ldev_num = myrs_translate_ldev(cs, sdev);
ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL|GFP_DMA);
if (!ldev_info)
return -ENOMEM;
status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
if (status != MYRS_STATUS_SUCCESS) {
sdev->hostdata = NULL;
kfree(ldev_info);
} else {
enum raid_level level;
dev_dbg(&sdev->sdev_gendev,
"Logical device mapping %d:%d:%d -> %d\n",
ldev_info->channel, ldev_info->target,
ldev_info->lun, ldev_info->ldev_num);
sdev->hostdata = ldev_info;
switch (ldev_info->raid_level) {
case MYRS_RAID_LEVEL0:
level = RAID_LEVEL_LINEAR;
break;
case MYRS_RAID_LEVEL1:
level = RAID_LEVEL_1;
break;
case MYRS_RAID_LEVEL3:
case MYRS_RAID_LEVEL3F:
case MYRS_RAID_LEVEL3L:
level = RAID_LEVEL_3;
break;
case MYRS_RAID_LEVEL5:
case MYRS_RAID_LEVEL5L:
level = RAID_LEVEL_5;
break;
case MYRS_RAID_LEVEL6:
level = RAID_LEVEL_6;
break;
case MYRS_RAID_LEVELE:
case MYRS_RAID_NEWSPAN:
case MYRS_RAID_SPAN:
level = RAID_LEVEL_LINEAR;
break;
case MYRS_RAID_JBOD:
level = RAID_LEVEL_JBOD;
break;
default:
level = RAID_LEVEL_UNKNOWN;
break;
}
raid_set_level(myrs_raid_template,
&sdev->sdev_gendev, level);
if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) {
const char *name;
name = myrs_devstate_name(ldev_info->dev_state);
sdev_printk(KERN_DEBUG, sdev,
"logical device in state %s\n",
name ? name : "Invalid");
}
}
} else {
struct myrs_pdev_info *pdev_info;
pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL|GFP_DMA);
if (!pdev_info)
return -ENOMEM;
status = myrs_get_pdev_info(cs, sdev->channel,
sdev->id, sdev->lun,
pdev_info);
if (status != MYRS_STATUS_SUCCESS) {
sdev->hostdata = NULL;
kfree(pdev_info);
return -ENXIO;
}
sdev->hostdata = pdev_info;
}
return 0;
}
static int myrs_slave_configure(struct scsi_device *sdev)
{
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info;
if (sdev->channel > sdev->host->max_channel)
return -ENXIO;
if (sdev->channel < cs->ctlr_info->physchan_present) {
/* Skip HBA device */
if (sdev->type == TYPE_RAID)
return -ENXIO;
sdev->no_uld_attach = 1;
return 0;
}
if (sdev->lun != 0)
return -ENXIO;
ldev_info = sdev->hostdata;
if (!ldev_info)
return -ENXIO;
if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
sdev->wce_default_on = 1;
sdev->tagged_supported = 1;
return 0;
}
static void myrs_slave_destroy(struct scsi_device *sdev)
{
kfree(sdev->hostdata);
}
struct scsi_host_template myrs_template = {
.module = THIS_MODULE,
.name = "DAC960",
.proc_name = "myrs",
.queuecommand = myrs_queuecommand,
.eh_host_reset_handler = myrs_host_reset,
.slave_alloc = myrs_slave_alloc,
.slave_configure = myrs_slave_configure,
.slave_destroy = myrs_slave_destroy,
.cmd_size = sizeof(struct myrs_cmdblk),
.shost_attrs = myrs_shost_attrs,
.sdev_attrs = myrs_sdev_attrs,
.this_id = -1,
};
static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev,
const struct pci_device_id *entry)
{
struct Scsi_Host *shost;
struct myrs_hba *cs;
shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba));
if (!shost)
return NULL;
shost->max_cmd_len = 16;
shost->max_lun = 256;
cs = shost_priv(shost);
mutex_init(&cs->dcmd_mutex);
mutex_init(&cs->cinfo_mutex);
cs->host = shost;
return cs;
}
/*
* RAID template functions
*/
/**
* myrs_is_raid - return boolean indicating device is raid volume
* @dev the device struct object
*/
static int
myrs_is_raid(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0;
}
/**
* myrs_get_resync - get raid volume resync percent complete
* @dev the device struct object
*/
static void
myrs_get_resync(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info = sdev->hostdata;
u64 percent_complete = 0;
u8 status;
if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
return;
if (ldev_info->rbld_active) {
unsigned short ldev_num = ldev_info->ldev_num;
status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
percent_complete = ldev_info->rbld_lba * 100;
do_div(percent_complete, ldev_info->cfg_devsize);
}
raid_set_resync(myrs_raid_template, dev, percent_complete);
}
/**
* myrs_get_state - get raid volume status
* @dev the device struct object
*/
static void
myrs_get_state(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct myrs_hba *cs = shost_priv(sdev->host);
struct myrs_ldev_info *ldev_info = sdev->hostdata;
enum raid_state state = RAID_STATE_UNKNOWN;
if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
state = RAID_STATE_UNKNOWN;
else {
switch (ldev_info->dev_state) {
case MYRS_DEVICE_ONLINE:
state = RAID_STATE_ACTIVE;
break;
case MYRS_DEVICE_SUSPECTED_CRITICAL:
case MYRS_DEVICE_CRITICAL:
state = RAID_STATE_DEGRADED;
break;
case MYRS_DEVICE_REBUILD:
state = RAID_STATE_RESYNCING;
break;
case MYRS_DEVICE_UNCONFIGURED:
case MYRS_DEVICE_INVALID_STATE:
state = RAID_STATE_UNKNOWN;
break;
default:
state = RAID_STATE_OFFLINE;
}
}
raid_set_state(myrs_raid_template, dev, state);
}
struct raid_function_template myrs_raid_functions = {
.cookie = &myrs_template,
.is_raid = myrs_is_raid,
.get_resync = myrs_get_resync,
.get_state = myrs_get_state,
};
/*
* PCI interface functions
*/
void myrs_flush_cache(struct myrs_hba *cs)
{
myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER);
}
static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk,
struct scsi_cmnd *scmd)
{
unsigned char status;
if (!cmd_blk)
return;
scsi_dma_unmap(scmd);
status = cmd_blk->status;
if (cmd_blk->sense) {
if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) {
unsigned int sense_len = SCSI_SENSE_BUFFERSIZE;
if (sense_len > cmd_blk->sense_len)
sense_len = cmd_blk->sense_len;
memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len);
}
dma_pool_free(cs->sense_pool, cmd_blk->sense,
cmd_blk->sense_addr);
cmd_blk->sense = NULL;
cmd_blk->sense_addr = 0;
}
if (cmd_blk->dcdb) {
dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb,
cmd_blk->dcdb_dma);
cmd_blk->dcdb = NULL;
cmd_blk->dcdb_dma = 0;
}
if (cmd_blk->sgl) {
dma_pool_free(cs->sg_pool, cmd_blk->sgl,
cmd_blk->sgl_addr);
cmd_blk->sgl = NULL;
cmd_blk->sgl_addr = 0;
}
if (cmd_blk->residual)
scsi_set_resid(scmd, cmd_blk->residual);
if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE ||
status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2)
scmd->result = (DID_BAD_TARGET << 16);
else
scmd->result = (DID_OK << 16) | status;
scmd->scsi_done(scmd);
}
static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
{
if (!cmd_blk)
return;
if (cmd_blk->complete) {
complete(cmd_blk->complete);
cmd_blk->complete = NULL;
}
}
static void myrs_monitor(struct work_struct *work)
{
struct myrs_hba *cs = container_of(work, struct myrs_hba,
monitor_work.work);
struct Scsi_Host *shost = cs->host;
struct myrs_ctlr_info *info = cs->ctlr_info;
unsigned int epoch = cs->fwstat_buf->epoch;
unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL;
unsigned char status;
dev_dbg(&shost->shost_gendev, "monitor tick\n");
status = myrs_get_fwstatus(cs);
if (cs->needs_update) {
cs->needs_update = false;
mutex_lock(&cs->cinfo_mutex);
status = myrs_get_ctlr_info(cs);
mutex_unlock(&cs->cinfo_mutex);
}
if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) {
status = myrs_get_event(cs, cs->next_evseq,
cs->event_buf);
if (status == MYRS_STATUS_SUCCESS) {
myrs_log_event(cs, cs->event_buf);
cs->next_evseq++;
interval = 1;
}
}
if (time_after(jiffies, cs->secondary_monitor_time
+ MYRS_SECONDARY_MONITOR_INTERVAL))
cs->secondary_monitor_time = jiffies;
if (info->bg_init_active +
info->ldev_init_active +
info->pdev_init_active +
info->cc_active +
info->rbld_active +
info->exp_active != 0) {
struct scsi_device *sdev;
shost_for_each_device(sdev, shost) {
struct myrs_ldev_info *ldev_info;
int ldev_num;
if (sdev->channel < info->physchan_present)
continue;
ldev_info = sdev->hostdata;
if (!ldev_info)
continue;
ldev_num = ldev_info->ldev_num;
myrs_get_ldev_info(cs, ldev_num, ldev_info);
}
cs->needs_update = true;
}
if (epoch == cs->epoch &&
cs->fwstat_buf->next_evseq == cs->next_evseq &&
(cs->needs_update == false ||
time_before(jiffies, cs->primary_monitor_time
+ MYRS_PRIMARY_MONITOR_INTERVAL))) {
interval = MYRS_SECONDARY_MONITOR_INTERVAL;
}
if (interval > 1)
cs->primary_monitor_time = jiffies;
queue_delayed_work(cs->work_q, &cs->monitor_work, interval);
}
static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs)
{
struct Scsi_Host *shost = cs->host;
size_t elem_size, elem_align;
elem_align = sizeof(struct myrs_sge);
elem_size = shost->sg_tablesize * elem_align;
cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev,
elem_size, elem_align, 0);
if (cs->sg_pool == NULL) {
shost_printk(KERN_ERR, shost,
"Failed to allocate SG pool\n");
return false;
}
cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev,
MYRS_SENSE_SIZE, sizeof(int), 0);
if (cs->sense_pool == NULL) {
dma_pool_destroy(cs->sg_pool);
cs->sg_pool = NULL;
shost_printk(KERN_ERR, shost,
"Failed to allocate sense data pool\n");
return false;
}
cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev,
MYRS_DCDB_SIZE,
sizeof(unsigned char), 0);
if (!cs->dcdb_pool) {
dma_pool_destroy(cs->sg_pool);
cs->sg_pool = NULL;
dma_pool_destroy(cs->sense_pool);
cs->sense_pool = NULL;
shost_printk(KERN_ERR, shost,
"Failed to allocate DCDB pool\n");
return false;
}
snprintf(cs->work_q_name, sizeof(cs->work_q_name),
"myrs_wq_%d", shost->host_no);
cs->work_q = create_singlethread_workqueue(cs->work_q_name);
if (!cs->work_q) {
dma_pool_destroy(cs->dcdb_pool);
cs->dcdb_pool = NULL;
dma_pool_destroy(cs->sg_pool);
cs->sg_pool = NULL;
dma_pool_destroy(cs->sense_pool);
cs->sense_pool = NULL;
shost_printk(KERN_ERR, shost,
"Failed to create workqueue\n");
return false;
}
/* Initialize the Monitoring Timer. */
INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor);
queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
return true;
}
static void myrs_destroy_mempools(struct myrs_hba *cs)
{
cancel_delayed_work_sync(&cs->monitor_work);
destroy_workqueue(cs->work_q);
dma_pool_destroy(cs->sg_pool);
dma_pool_destroy(cs->dcdb_pool);
dma_pool_destroy(cs->sense_pool);
}
static void myrs_unmap(struct myrs_hba *cs)
{
kfree(cs->event_buf);
kfree(cs->ctlr_info);
if (cs->fwstat_buf) {
dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat),
cs->fwstat_buf, cs->fwstat_addr);
cs->fwstat_buf = NULL;
}
if (cs->first_stat_mbox) {
dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size,
cs->first_stat_mbox, cs->stat_mbox_addr);
cs->first_stat_mbox = NULL;
}
if (cs->first_cmd_mbox) {
dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size,
cs->first_cmd_mbox, cs->cmd_mbox_addr);
cs->first_cmd_mbox = NULL;
}
}
static void myrs_cleanup(struct myrs_hba *cs)
{
struct pci_dev *pdev = cs->pdev;
/* Free the memory mailbox, status, and related structures */
myrs_unmap(cs);
if (cs->mmio_base) {
if (cs->disable_intr)
cs->disable_intr(cs);
iounmap(cs->mmio_base);
cs->mmio_base = NULL;
}
if (cs->irq)
free_irq(cs->irq, cs);
if (cs->io_addr)
release_region(cs->io_addr, 0x80);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
scsi_host_put(cs->host);
}
static struct myrs_hba *myrs_detect(struct pci_dev *pdev,
const struct pci_device_id *entry)
{
struct myrs_privdata *privdata =
(struct myrs_privdata *)entry->driver_data;
irq_handler_t irq_handler = privdata->irq_handler;
unsigned int mmio_size = privdata->mmio_size;
struct myrs_hba *cs = NULL;
cs = myrs_alloc_host(pdev, entry);
if (!cs) {
dev_err(&pdev->dev, "Unable to allocate Controller\n");
return NULL;
}
cs->pdev = pdev;
if (pci_enable_device(pdev))
goto Failure;
cs->pci_addr = pci_resource_start(pdev, 0);
pci_set_drvdata(pdev, cs);
spin_lock_init(&cs->queue_lock);
/* Map the Controller Register Window. */
if (mmio_size < PAGE_SIZE)
mmio_size = PAGE_SIZE;
cs->mmio_base = ioremap_nocache(cs->pci_addr & PAGE_MASK, mmio_size);
if (cs->mmio_base == NULL) {
dev_err(&pdev->dev,
"Unable to map Controller Register Window\n");
goto Failure;
}
cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK);
if (privdata->hw_init(pdev, cs, cs->io_base))
goto Failure;
/* Acquire shared access to the IRQ Channel. */
if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) {
dev_err(&pdev->dev,
"Unable to acquire IRQ Channel %d\n", pdev->irq);
goto Failure;
}
cs->irq = pdev->irq;
return cs;
Failure:
dev_err(&pdev->dev,
"Failed to initialize Controller\n");
myrs_cleanup(cs);
return NULL;
}
/**
* myrs_err_status reports Controller BIOS Messages passed through
the Error Status Register when the driver performs the BIOS handshaking.
It returns true for fatal errors and false otherwise.
*/
static bool myrs_err_status(struct myrs_hba *cs, unsigned char status,
unsigned char parm0, unsigned char parm1)
{
struct pci_dev *pdev = cs->pdev;
switch (status) {
case 0x00:
dev_info(&pdev->dev,
"Physical Device %d:%d Not Responding\n",
parm1, parm0);
break;
case 0x08:
dev_notice(&pdev->dev, "Spinning Up Drives\n");
break;
case 0x30:
dev_notice(&pdev->dev, "Configuration Checksum Error\n");
break;
case 0x60:
dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n");
break;
case 0x70:
dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n");
break;
case 0x90:
dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n",
parm1, parm0);
break;
case 0xA0:
dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n");
break;
case 0xB0:
dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n");
break;
case 0xD0:
dev_notice(&pdev->dev, "New Controller Configuration Found\n");
break;
case 0xF0:
dev_err(&pdev->dev, "Fatal Memory Parity Error\n");
return true;
default:
dev_err(&pdev->dev, "Unknown Initialization Error %02X\n",
status);
return true;
}
return false;
}
/*
* Hardware-specific functions
*/
/*
* DAC960 GEM Series Controllers.
*/
static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
}
static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24);
writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET);
}
static inline void DAC960_GEM_gen_intr(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_IDB_GEN_IRQ << 24);
writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
}
static inline void DAC960_GEM_reset_ctrl(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24);
writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
}
static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
}
static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base)
{
__le32 val;
val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL;
}
static inline bool DAC960_GEM_init_in_progress(void __iomem *base)
{
__le32 val;
val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS;
}
static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24);
writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
}
static inline void DAC960_GEM_ack_mem_mbox_intr(void __iomem *base)
{
__le32 val = cpu_to_le32(DAC960_GEM_ODB_MMBOX_ACK_IRQ << 24);
writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
}
static inline void DAC960_GEM_ack_intr(void __iomem *base)
{
__le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ |
DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24);
writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
}
static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base)
{
__le32 val;
val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL;
}
static inline bool DAC960_GEM_mem_mbox_status_available(void __iomem *base)
{
__le32 val;
val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_MMBOX_STS_AVAIL;
}
static inline void DAC960_GEM_enable_intr(void __iomem *base)
{
__le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ |
DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24);
writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET);
}
static inline void DAC960_GEM_disable_intr(void __iomem *base)
{
__le32 val = 0;
writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET);
}
static inline bool DAC960_GEM_intr_enabled(void __iomem *base)
{
__le32 val;
val = readl(base + DAC960_GEM_IRQMASK_READ_OFFSET);
return !((le32_to_cpu(val) >> 24) &
(DAC960_GEM_IRQMASK_HWMBOX_IRQ |
DAC960_GEM_IRQMASK_MMBOX_IRQ));
}
static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
union myrs_cmd_mbox *mbox)
{
memcpy(&mem_mbox->words[1], &mbox->words[1],
sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
/* Barrier to avoid reordering */
wmb();
mem_mbox->words[0] = mbox->words[0];
/* Barrier to force PCI access */
mb();
}
static inline void DAC960_GEM_write_hw_mbox(void __iomem *base,
dma_addr_t cmd_mbox_addr)
{
dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET);
}
static inline unsigned short DAC960_GEM_read_cmd_ident(void __iomem *base)
{
return readw(base + DAC960_GEM_CMDSTS_OFFSET);
}
static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base)
{
return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2);
}
static inline bool
DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error,
unsigned char *param0, unsigned char *param1)
{
__le32 val;
val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET);
if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING))
return false;
*error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24);
*param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0);
*param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1);
writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET);
return true;
}
static inline unsigned char
DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
{
unsigned char status;
while (DAC960_GEM_hw_mbox_is_full(base))
udelay(1);
DAC960_GEM_write_hw_mbox(base, mbox_addr);
DAC960_GEM_hw_mbox_new_cmd(base);
while (!DAC960_GEM_hw_mbox_status_available(base))
udelay(1);
status = DAC960_GEM_read_cmd_status(base);
DAC960_GEM_ack_hw_mbox_intr(base);
DAC960_GEM_ack_hw_mbox_status(base);
return status;
}
static int DAC960_GEM_hw_init(struct pci_dev *pdev,
struct myrs_hba *cs, void __iomem *base)
{
int timeout = 0;
unsigned char status, parm0, parm1;
DAC960_GEM_disable_intr(base);
DAC960_GEM_ack_hw_mbox_status(base);
udelay(1000);
while (DAC960_GEM_init_in_progress(base) &&
timeout < MYRS_MAILBOX_TIMEOUT) {
if (DAC960_GEM_read_error_status(base, &status,
&parm0, &parm1) &&
myrs_err_status(cs, status, parm0, parm1))
return -EIO;
udelay(10);
timeout++;
}
if (timeout == MYRS_MAILBOX_TIMEOUT) {
dev_err(&pdev->dev,
"Timeout waiting for Controller Initialisation\n");
return -ETIMEDOUT;
}
if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) {
dev_err(&pdev->dev,
"Unable to Enable Memory Mailbox Interface\n");
DAC960_GEM_reset_ctrl(base);
return -EAGAIN;
}
DAC960_GEM_enable_intr(base);
cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox;
cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd;
cs->disable_intr = DAC960_GEM_disable_intr;
cs->reset = DAC960_GEM_reset_ctrl;
return 0;
}
static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg)
{
struct myrs_hba *cs = arg;
void __iomem *base = cs->io_base;
struct myrs_stat_mbox *next_stat_mbox;
unsigned long flags;
spin_lock_irqsave(&cs->queue_lock, flags);
DAC960_GEM_ack_intr(base);
next_stat_mbox = cs->next_stat_mbox;
while (next_stat_mbox->id > 0) {
unsigned short id = next_stat_mbox->id;
struct scsi_cmnd *scmd = NULL;
struct myrs_cmdblk *cmd_blk = NULL;
if (id == MYRS_DCMD_TAG)
cmd_blk = &cs->dcmd_blk;
else if (id == MYRS_MCMD_TAG)
cmd_blk = &cs->mcmd_blk;
else {
scmd = scsi_host_find_tag(cs->host, id - 3);
if (scmd)
cmd_blk = scsi_cmd_priv(scmd);
}
if (cmd_blk) {
cmd_blk->status = next_stat_mbox->status;
cmd_blk->sense_len = next_stat_mbox->sense_len;
cmd_blk->residual = next_stat_mbox->residual;
} else
dev_err(&cs->pdev->dev,
"Unhandled command completion %d\n", id);
memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
if (++next_stat_mbox > cs->last_stat_mbox)
next_stat_mbox = cs->first_stat_mbox;
if (cmd_blk) {
if (id < 3)
myrs_handle_cmdblk(cs, cmd_blk);
else
myrs_handle_scsi(cs, cmd_blk, scmd);
}
}
cs->next_stat_mbox = next_stat_mbox;
spin_unlock_irqrestore(&cs->queue_lock, flags);
return IRQ_HANDLED;
}
struct myrs_privdata DAC960_GEM_privdata = {
.hw_init = DAC960_GEM_hw_init,
.irq_handler = DAC960_GEM_intr_handler,
.mmio_size = DAC960_GEM_mmio_size,
};
/*
* DAC960 BA Series Controllers.
*/
static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base)
{
writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
}
static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base)
{
writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET);
}
static inline void DAC960_BA_gen_intr(void __iomem *base)
{
writeb(DAC960_BA_IDB_GEN_IRQ, base + DAC960_BA_IDB_OFFSET);
}
static inline void DAC960_BA_reset_ctrl(void __iomem *base)
{
writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET);
}
static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base)
{
writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
}
static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_BA_IDB_OFFSET);
return !(val & DAC960_BA_IDB_HWMBOX_EMPTY);
}
static inline bool DAC960_BA_init_in_progress(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_BA_IDB_OFFSET);
return !(val & DAC960_BA_IDB_INIT_DONE);
}
static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base)
{
writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
}
static inline void DAC960_BA_ack_mem_mbox_intr(void __iomem *base)
{
writeb(DAC960_BA_ODB_MMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
}
static inline void DAC960_BA_ack_intr(void __iomem *base)
{
writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ,
base + DAC960_BA_ODB_OFFSET);
}
static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_BA_ODB_OFFSET);
return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL;
}
static inline bool DAC960_BA_mem_mbox_status_available(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_BA_ODB_OFFSET);
return val & DAC960_BA_ODB_MMBOX_STS_AVAIL;
}
static inline void DAC960_BA_enable_intr(void __iomem *base)
{
writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET);
}
static inline void DAC960_BA_disable_intr(void __iomem *base)
{
writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET);
}
static inline bool DAC960_BA_intr_enabled(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_BA_IRQMASK_OFFSET);
return !(val & DAC960_BA_IRQMASK_DISABLE_IRQ);
}
static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
union myrs_cmd_mbox *mbox)
{
memcpy(&mem_mbox->words[1], &mbox->words[1],
sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
/* Barrier to avoid reordering */
wmb();
mem_mbox->words[0] = mbox->words[0];
/* Barrier to force PCI access */
mb();
}
static inline void DAC960_BA_write_hw_mbox(void __iomem *base,
dma_addr_t cmd_mbox_addr)
{
dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET);
}
static inline unsigned short DAC960_BA_read_cmd_ident(void __iomem *base)
{
return readw(base + DAC960_BA_CMDSTS_OFFSET);
}
static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base)
{
return readw(base + DAC960_BA_CMDSTS_OFFSET + 2);
}
static inline bool
DAC960_BA_read_error_status(void __iomem *base, unsigned char *error,
unsigned char *param0, unsigned char *param1)
{
u8 val;
val = readb(base + DAC960_BA_ERRSTS_OFFSET);
if (!(val & DAC960_BA_ERRSTS_PENDING))
return false;
val &= ~DAC960_BA_ERRSTS_PENDING;
*error = val;
*param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0);
*param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1);
writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET);
return true;
}
static inline unsigned char
DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
{
unsigned char status;
while (DAC960_BA_hw_mbox_is_full(base))
udelay(1);
DAC960_BA_write_hw_mbox(base, mbox_addr);
DAC960_BA_hw_mbox_new_cmd(base);
while (!DAC960_BA_hw_mbox_status_available(base))
udelay(1);
status = DAC960_BA_read_cmd_status(base);
DAC960_BA_ack_hw_mbox_intr(base);
DAC960_BA_ack_hw_mbox_status(base);
return status;
}
static int DAC960_BA_hw_init(struct pci_dev *pdev,
struct myrs_hba *cs, void __iomem *base)
{
int timeout = 0;
unsigned char status, parm0, parm1;
DAC960_BA_disable_intr(base);
DAC960_BA_ack_hw_mbox_status(base);
udelay(1000);
while (DAC960_BA_init_in_progress(base) &&
timeout < MYRS_MAILBOX_TIMEOUT) {
if (DAC960_BA_read_error_status(base, &status,
&parm0, &parm1) &&
myrs_err_status(cs, status, parm0, parm1))
return -EIO;
udelay(10);
timeout++;
}
if (timeout == MYRS_MAILBOX_TIMEOUT) {
dev_err(&pdev->dev,
"Timeout waiting for Controller Initialisation\n");
return -ETIMEDOUT;
}
if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) {
dev_err(&pdev->dev,
"Unable to Enable Memory Mailbox Interface\n");
DAC960_BA_reset_ctrl(base);
return -EAGAIN;
}
DAC960_BA_enable_intr(base);
cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox;
cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd;
cs->disable_intr = DAC960_BA_disable_intr;
cs->reset = DAC960_BA_reset_ctrl;
return 0;
}
static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg)
{
struct myrs_hba *cs = arg;
void __iomem *base = cs->io_base;
struct myrs_stat_mbox *next_stat_mbox;
unsigned long flags;
spin_lock_irqsave(&cs->queue_lock, flags);
DAC960_BA_ack_intr(base);
next_stat_mbox = cs->next_stat_mbox;
while (next_stat_mbox->id > 0) {
unsigned short id = next_stat_mbox->id;
struct scsi_cmnd *scmd = NULL;
struct myrs_cmdblk *cmd_blk = NULL;
if (id == MYRS_DCMD_TAG)
cmd_blk = &cs->dcmd_blk;
else if (id == MYRS_MCMD_TAG)
cmd_blk = &cs->mcmd_blk;
else {
scmd = scsi_host_find_tag(cs->host, id - 3);
if (scmd)
cmd_blk = scsi_cmd_priv(scmd);
}
if (cmd_blk) {
cmd_blk->status = next_stat_mbox->status;
cmd_blk->sense_len = next_stat_mbox->sense_len;
cmd_blk->residual = next_stat_mbox->residual;
} else
dev_err(&cs->pdev->dev,
"Unhandled command completion %d\n", id);
memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
if (++next_stat_mbox > cs->last_stat_mbox)
next_stat_mbox = cs->first_stat_mbox;
if (cmd_blk) {
if (id < 3)
myrs_handle_cmdblk(cs, cmd_blk);
else
myrs_handle_scsi(cs, cmd_blk, scmd);
}
}
cs->next_stat_mbox = next_stat_mbox;
spin_unlock_irqrestore(&cs->queue_lock, flags);
return IRQ_HANDLED;
}
struct myrs_privdata DAC960_BA_privdata = {
.hw_init = DAC960_BA_hw_init,
.irq_handler = DAC960_BA_intr_handler,
.mmio_size = DAC960_BA_mmio_size,
};
/*
* DAC960 LP Series Controllers.
*/
static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base)
{
writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
}
static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base)
{
writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET);
}
static inline void DAC960_LP_gen_intr(void __iomem *base)
{
writeb(DAC960_LP_IDB_GEN_IRQ, base + DAC960_LP_IDB_OFFSET);
}
static inline void DAC960_LP_reset_ctrl(void __iomem *base)
{
writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET);
}
static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base)
{
writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
}
static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_LP_IDB_OFFSET);
return val & DAC960_LP_IDB_HWMBOX_FULL;
}
static inline bool DAC960_LP_init_in_progress(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_LP_IDB_OFFSET);
return val & DAC960_LP_IDB_INIT_IN_PROGRESS;
}
static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base)
{
writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
}
static inline void DAC960_LP_ack_mem_mbox_intr(void __iomem *base)
{
writeb(DAC960_LP_ODB_MMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
}
static inline void DAC960_LP_ack_intr(void __iomem *base)
{
writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ,
base + DAC960_LP_ODB_OFFSET);
}
static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_LP_ODB_OFFSET);
return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL;
}
static inline bool DAC960_LP_mem_mbox_status_available(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_LP_ODB_OFFSET);
return val & DAC960_LP_ODB_MMBOX_STS_AVAIL;
}
static inline void DAC960_LP_enable_intr(void __iomem *base)
{
writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET);
}
static inline void DAC960_LP_disable_intr(void __iomem *base)
{
writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET);
}
static inline bool DAC960_LP_intr_enabled(void __iomem *base)
{
u8 val;
val = readb(base + DAC960_LP_IRQMASK_OFFSET);
return !(val & DAC960_LP_IRQMASK_DISABLE_IRQ);
}
static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
union myrs_cmd_mbox *mbox)
{
memcpy(&mem_mbox->words[1], &mbox->words[1],
sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
/* Barrier to avoid reordering */
wmb();
mem_mbox->words[0] = mbox->words[0];
/* Barrier to force PCI access */
mb();
}
static inline void DAC960_LP_write_hw_mbox(void __iomem *base,
dma_addr_t cmd_mbox_addr)
{
dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET);
}
static inline unsigned short DAC960_LP_read_cmd_ident(void __iomem *base)
{
return readw(base + DAC960_LP_CMDSTS_OFFSET);
}
static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base)
{
return readw(base + DAC960_LP_CMDSTS_OFFSET + 2);
}
static inline bool
DAC960_LP_read_error_status(void __iomem *base, unsigned char *error,
unsigned char *param0, unsigned char *param1)
{
u8 val;
val = readb(base + DAC960_LP_ERRSTS_OFFSET);
if (!(val & DAC960_LP_ERRSTS_PENDING))
return false;
val &= ~DAC960_LP_ERRSTS_PENDING;
*error = val;
*param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0);
*param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1);
writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET);
return true;
}
static inline unsigned char
DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
{
unsigned char status;
while (DAC960_LP_hw_mbox_is_full(base))
udelay(1);
DAC960_LP_write_hw_mbox(base, mbox_addr);
DAC960_LP_hw_mbox_new_cmd(base);
while (!DAC960_LP_hw_mbox_status_available(base))
udelay(1);
status = DAC960_LP_read_cmd_status(base);
DAC960_LP_ack_hw_mbox_intr(base);
DAC960_LP_ack_hw_mbox_status(base);
return status;
}
static int DAC960_LP_hw_init(struct pci_dev *pdev,
struct myrs_hba *cs, void __iomem *base)
{
int timeout = 0;
unsigned char status, parm0, parm1;
DAC960_LP_disable_intr(base);
DAC960_LP_ack_hw_mbox_status(base);
udelay(1000);
while (DAC960_LP_init_in_progress(base) &&
timeout < MYRS_MAILBOX_TIMEOUT) {
if (DAC960_LP_read_error_status(base, &status,
&parm0, &parm1) &&
myrs_err_status(cs, status, parm0, parm1))
return -EIO;
udelay(10);
timeout++;
}
if (timeout == MYRS_MAILBOX_TIMEOUT) {
dev_err(&pdev->dev,
"Timeout waiting for Controller Initialisation\n");
return -ETIMEDOUT;
}
if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) {
dev_err(&pdev->dev,
"Unable to Enable Memory Mailbox Interface\n");
DAC960_LP_reset_ctrl(base);
return -ENODEV;
}
DAC960_LP_enable_intr(base);
cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox;
cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd;
cs->disable_intr = DAC960_LP_disable_intr;
cs->reset = DAC960_LP_reset_ctrl;
return 0;
}
static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg)
{
struct myrs_hba *cs = arg;
void __iomem *base = cs->io_base;
struct myrs_stat_mbox *next_stat_mbox;
unsigned long flags;
spin_lock_irqsave(&cs->queue_lock, flags);
DAC960_LP_ack_intr(base);
next_stat_mbox = cs->next_stat_mbox;
while (next_stat_mbox->id > 0) {
unsigned short id = next_stat_mbox->id;
struct scsi_cmnd *scmd = NULL;
struct myrs_cmdblk *cmd_blk = NULL;
if (id == MYRS_DCMD_TAG)
cmd_blk = &cs->dcmd_blk;
else if (id == MYRS_MCMD_TAG)
cmd_blk = &cs->mcmd_blk;
else {
scmd = scsi_host_find_tag(cs->host, id - 3);
if (scmd)
cmd_blk = scsi_cmd_priv(scmd);
}
if (cmd_blk) {
cmd_blk->status = next_stat_mbox->status;
cmd_blk->sense_len = next_stat_mbox->sense_len;
cmd_blk->residual = next_stat_mbox->residual;
} else
dev_err(&cs->pdev->dev,
"Unhandled command completion %d\n", id);
memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
if (++next_stat_mbox > cs->last_stat_mbox)
next_stat_mbox = cs->first_stat_mbox;
if (cmd_blk) {
if (id < 3)
myrs_handle_cmdblk(cs, cmd_blk);
else
myrs_handle_scsi(cs, cmd_blk, scmd);
}
}
cs->next_stat_mbox = next_stat_mbox;
spin_unlock_irqrestore(&cs->queue_lock, flags);
return IRQ_HANDLED;
}
struct myrs_privdata DAC960_LP_privdata = {
.hw_init = DAC960_LP_hw_init,
.irq_handler = DAC960_LP_intr_handler,
.mmio_size = DAC960_LP_mmio_size,
};
/*
* Module functions
*/
static int
myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry)
{
struct myrs_hba *cs;
int ret;
cs = myrs_detect(dev, entry);
if (!cs)
return -ENODEV;
ret = myrs_get_config(cs);
if (ret < 0) {
myrs_cleanup(cs);
return ret;
}
if (!myrs_create_mempools(dev, cs)) {
ret = -ENOMEM;
goto failed;
}
ret = scsi_add_host(cs->host, &dev->dev);
if (ret) {
dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret);
myrs_destroy_mempools(cs);
goto failed;
}
scsi_scan_host(cs->host);
return 0;
failed:
myrs_cleanup(cs);
return ret;
}
static void myrs_remove(struct pci_dev *pdev)
{
struct myrs_hba *cs = pci_get_drvdata(pdev);
if (cs == NULL)
return;
shost_printk(KERN_NOTICE, cs->host, "Flushing Cache...");
myrs_flush_cache(cs);
myrs_destroy_mempools(cs);
myrs_cleanup(cs);
}
static const struct pci_device_id myrs_id_table[] = {
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX,
PCI_DEVICE_ID_MYLEX_DAC960_GEM,
PCI_VENDOR_ID_MYLEX, PCI_ANY_ID),
.driver_data = (unsigned long) &DAC960_GEM_privdata,
},
{
PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata),
},
{
PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata),
},
{0, },
};
MODULE_DEVICE_TABLE(pci, myrs_id_table);
static struct pci_driver myrs_pci_driver = {
.name = "myrs",
.id_table = myrs_id_table,
.probe = myrs_probe,
.remove = myrs_remove,
};
static int __init myrs_init_module(void)
{
int ret;
myrs_raid_template = raid_class_attach(&myrs_raid_functions);
if (!myrs_raid_template)
return -ENODEV;
ret = pci_register_driver(&myrs_pci_driver);
if (ret)
raid_class_release(myrs_raid_template);
return ret;
}
static void __exit myrs_cleanup_module(void)
{
pci_unregister_driver(&myrs_pci_driver);
raid_class_release(myrs_raid_template);
}
module_init(myrs_init_module);
module_exit(myrs_cleanup_module);
MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)");
MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>");
MODULE_LICENSE("GPL");