OpenCloudOS-Kernel/arch/x86/kernel/asm-offsets.c

109 lines
3.3 KiB
C
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Generate definitions needed by assembly language modules.
* This code generates raw asm output which is post-processed to extract
* and format the required data.
*/
#define COMPILE_OFFSETS
#include <linux/crypto.h>
#include <linux/sched.h>
#include <linux/stddef.h>
#include <linux/hardirq.h>
#include <linux/suspend.h>
#include <linux/kbuild.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/sigframe.h>
#include <asm/bootparam.h>
#include <asm/suspend.h>
x86/mm: Use/Fix PCID to optimize user/kernel switches We can use PCID to retain the TLBs across CR3 switches; including those now part of the user/kernel switch. This increases performance of kernel entry/exit at the cost of more expensive/complicated TLB flushing. Now that we have two address spaces, one for kernel and one for user space, we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID (just like we use the PFN LSB for the PGD). Since we do TLB invalidation from kernel space, the existing code will only invalidate the kernel PCID, we augment that by marking the corresponding user PCID invalid, and upon switching back to userspace, use a flushing CR3 write for the switch. In order to access the user_pcid_flush_mask we use PER_CPU storage, which means the previously established SWAPGS vs CR3 ordering is now mandatory and required. Having to do this memory access does require additional registers, most sites have a functioning stack and we can spill one (RAX), sites without functional stack need to otherwise provide the second scratch register. Note: PCID is generally available on Intel Sandybridge and later CPUs. Note: Up until this point TLB flushing was broken in this series. Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 22:07:59 +08:00
#include <asm/tlbflush.h>
#ifdef CONFIG_XEN
#include <xen/interface/xen.h>
#endif
#ifdef CONFIG_X86_32
# include "asm-offsets_32.c"
#else
# include "asm-offsets_64.c"
#endif
static void __used common(void)
{
BLANK();
OFFSET(TASK_threadsp, task_struct, thread.sp);
Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-14 11:21:18 +08:00
#ifdef CONFIG_STACKPROTECTOR
OFFSET(TASK_stack_canary, task_struct, stack_canary);
#endif
BLANK();
OFFSET(TASK_addr_limit, task_struct, thread.addr_limit);
BLANK();
OFFSET(crypto_tfm_ctx_offset, crypto_tfm, __crt_ctx);
BLANK();
OFFSET(pbe_address, pbe, address);
OFFSET(pbe_orig_address, pbe, orig_address);
OFFSET(pbe_next, pbe, next);
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
BLANK();
OFFSET(IA32_SIGCONTEXT_ax, sigcontext_32, ax);
OFFSET(IA32_SIGCONTEXT_bx, sigcontext_32, bx);
OFFSET(IA32_SIGCONTEXT_cx, sigcontext_32, cx);
OFFSET(IA32_SIGCONTEXT_dx, sigcontext_32, dx);
OFFSET(IA32_SIGCONTEXT_si, sigcontext_32, si);
OFFSET(IA32_SIGCONTEXT_di, sigcontext_32, di);
OFFSET(IA32_SIGCONTEXT_bp, sigcontext_32, bp);
OFFSET(IA32_SIGCONTEXT_sp, sigcontext_32, sp);
OFFSET(IA32_SIGCONTEXT_ip, sigcontext_32, ip);
BLANK();
OFFSET(IA32_RT_SIGFRAME_sigcontext, rt_sigframe_ia32, uc.uc_mcontext);
#endif
#ifdef CONFIG_PARAVIRT_XXL
BLANK();
OFFSET(PV_IRQ_irq_disable, paravirt_patch_template, irq.irq_disable);
OFFSET(PV_IRQ_irq_enable, paravirt_patch_template, irq.irq_enable);
OFFSET(PV_CPU_iret, paravirt_patch_template, cpu.iret);
OFFSET(PV_MMU_read_cr2, paravirt_patch_template, mmu.read_cr2);
#endif
#ifdef CONFIG_XEN
BLANK();
OFFSET(XEN_vcpu_info_mask, vcpu_info, evtchn_upcall_mask);
OFFSET(XEN_vcpu_info_pending, vcpu_info, evtchn_upcall_pending);
OFFSET(XEN_vcpu_info_arch_cr2, vcpu_info, arch.cr2);
#endif
BLANK();
OFFSET(BP_scratch, boot_params, scratch);
OFFSET(BP_secure_boot, boot_params, secure_boot);
OFFSET(BP_loadflags, boot_params, hdr.loadflags);
OFFSET(BP_hardware_subarch, boot_params, hdr.hardware_subarch);
OFFSET(BP_version, boot_params, hdr.version);
OFFSET(BP_kernel_alignment, boot_params, hdr.kernel_alignment);
x86/boot: Move compressed kernel to the end of the decompression buffer This change makes later calculations about where the kernel is located easier to reason about. To better understand this change, we must first clarify what 'VO' and 'ZO' are. These values were introduced in commits by hpa: 77d1a4999502 ("x86, boot: make symbols from the main vmlinux available") 37ba7ab5e33c ("x86, boot: make kernel_alignment adjustable; new bzImage fields") Specifically: All names prefixed with 'VO_': - relate to the uncompressed kernel image - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define) All names prefixed with 'ZO_': - relate to the bootable compressed kernel image (boot/compressed/vmlinux), which is composed of the following memory areas: - head text - compressed kernel (VO image and relocs table) - decompressor code - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below) The 'INIT_SIZE' value is used to find the larger of the two image sizes: #define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset) #define VO_INIT_SIZE (VO__end - VO__text) #if ZO_INIT_SIZE > VO_INIT_SIZE # define INIT_SIZE ZO_INIT_SIZE #else # define INIT_SIZE VO_INIT_SIZE #endif The current code uses extract_offset to decide where to position the copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE currently includes the extract_offset.) Why does z_extract_offset exist? It's needed because we are trying to minimize the amount of RAM used for the whole act of creating an uncompressed, executable, properly relocation-linked kernel image in system memory. We do this so that kernels can be booted on even very small systems. To achieve the goal of minimal memory consumption we have implemented an in-place decompression strategy: instead of cleanly separating the VO and ZO images and also allocating some memory for the decompression code's runtime needs, we instead create this elaborate layout of memory buffers where the output (decompressed) stream, as it progresses, overlaps with and destroys the input (compressed) stream. This can only be done safely if the ZO image is placed to the end of the VO range, plus a certain amount of safety distance to make sure that when the last bytes of the VO range are decompressed, the compressed stream pointer is safely beyond the end of the VO range. z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during the build process, at a point when we know the exact compressed and uncompressed size of the kernel images and can calculate this safe minimum offset value. (Note that the mkpiggy.c calculation is not perfect, because we don't know the decompressor used at that stage, so the z_extract_offset calculation is necessarily imprecise and is mostly based on gzip internals - we'll improve that in the next patch.) When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible), the copied ZO occupies the memory from extract_offset to the end of decompression buffer. It overlaps with the soon-to-be-uncompressed kernel like this: |-----compressed kernel image------| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO VO__end ZO__end ^ ^ |-------uncompressed kernel image---------| When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space left from end of ZO to the end of decompressing buffer, like below. |-compressed kernel image-| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO ZO__end VO__end ^ ^ |------------uncompressed kernel image-------------| To simplify calculations and avoid special cases, it is cleaner to always place the compressed kernel image in memory so that ZO__end is at the end of the decompression buffer, instead of placing t at the start of extract_offset as is currently done. This patch adds BP_init_size (which is the INIT_SIZE as passed in from the boot_params) into asm-offsets.c to make it visible to the assembly code. Then when moving the ZO, it calculates the starting position of the copied ZO (via BP_init_size and the ZO run size) so that the VO__end will be at the end of the decompression buffer. To make the position calculation safe, the end of ZO is page aligned (and a comment is added to the existing VO alignment for good measure). Signed-off-by: Yinghai Lu <yinghai@kernel.org> [ Rewrote changelog and comments. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org [ Rewrote the changelog some more. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 08:09:04 +08:00
OFFSET(BP_init_size, boot_params, hdr.init_size);
x86, efi: EFI boot stub support There is currently a large divide between kernel development and the development of EFI boot loaders. The idea behind this patch is to give the kernel developers full control over the EFI boot process. As H. Peter Anvin put it, "The 'kernel carries its own stub' approach been very successful in dealing with BIOS, and would make a lot of sense to me for EFI as well." This patch introduces an EFI boot stub that allows an x86 bzImage to be loaded and executed by EFI firmware. The bzImage appears to the firmware as an EFI application. Luckily there are enough free bits within the bzImage header so that it can masquerade as an EFI application, thereby coercing the EFI firmware into loading it and jumping to its entry point. The beauty of this masquerading approach is that both BIOS and EFI boot loaders can still load and run the same bzImage, thereby allowing a single kernel image to work in any boot environment. The EFI boot stub supports multiple initrds, but they must exist on the same partition as the bzImage. Command-line arguments for the kernel can be appended after the bzImage name when run from the EFI shell, e.g. Shell> bzImage console=ttyS0 root=/dev/sdb initrd=initrd.img v7: - Fix checkpatch warnings. v6: - Try to allocate initrd memory just below hdr->inird_addr_max. v5: - load_options_size is UTF-16, which needs dividing by 2 to convert to the corresponding ASCII size. v4: - Don't read more than image->load_options_size v3: - Fix following warnings when compiling CONFIG_EFI_STUB=n arch/x86/boot/tools/build.c: In function ‘main’: arch/x86/boot/tools/build.c:138:24: warning: unused variable ‘pe_header’ arch/x86/boot/tools/build.c:138:15: warning: unused variable ‘file_sz’ - As reported by Matthew Garrett, some Apple machines have GOPs that don't have hardware attached. We need to weed these out by searching for ones that handle the PCIIO protocol. - Don't allocate memory if no initrds are on cmdline - Don't trust image->load_options_size Maarten Lankhorst noted: - Don't strip first argument when booted from efibootmgr - Don't allocate too much memory for cmdline - Don't update cmdline_size, the kernel considers it read-only - Don't accept '\n' for initrd names v2: - File alignment was too large, was 8192 should be 512. Reported by Maarten Lankhorst on LKML. - Added UGA support for graphics - Use VIDEO_TYPE_EFI instead of hard-coded number. - Move linelength assignment until after we've assigned depth - Dynamically fill out AddressOfEntryPoint in tools/build.c - Don't use magic number for GDT/TSS stuff. Requested by Andi Kleen - The bzImage may need to be relocated as it may have been loaded at a high address address by the firmware. This was required to get my macbook booting because the firmware loaded it at 0x7cxxxxxx, which triggers this error in decompress_kernel(), if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff)) error("Destination address too large"); Cc: Mike Waychison <mikew@google.com> Cc: Matthew Garrett <mjg@redhat.com> Tested-by: Henrik Rydberg <rydberg@euromail.se> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Link: http://lkml.kernel.org/r/1321383097.2657.9.camel@mfleming-mobl1.ger.corp.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-13 05:27:52 +08:00
OFFSET(BP_pref_address, boot_params, hdr.pref_address);
OFFSET(BP_code32_start, boot_params, hdr.code32_start);
BLANK();
DEFINE(PTREGS_SIZE, sizeof(struct pt_regs));
x86/entry/64: Allocate and enable the SYSENTER stack This will simplify future changes that want scratch variables early in the SYSENTER handler -- they'll be able to spill registers to the stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user. This does not depend on CONFIG_IA32_EMULATION=y because we'll want the stack space even without IA32 emulation. As far as I can tell, the reason that this wasn't done from day 1 is that we use IST for #DB and #BP, which is IMO rather nasty and causes a lot more problems than it solves. But, since #DB uses IST, we don't actually need a real stack for SYSENTER (because SYSENTER with TF set will invoke #DB on the IST stack rather than the SYSENTER stack). I want to remove IST usage from these vectors some day, and this patch is a prerequisite for that as well. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 22:07:12 +08:00
x86/mm: Use/Fix PCID to optimize user/kernel switches We can use PCID to retain the TLBs across CR3 switches; including those now part of the user/kernel switch. This increases performance of kernel entry/exit at the cost of more expensive/complicated TLB flushing. Now that we have two address spaces, one for kernel and one for user space, we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID (just like we use the PFN LSB for the PGD). Since we do TLB invalidation from kernel space, the existing code will only invalidate the kernel PCID, we augment that by marking the corresponding user PCID invalid, and upon switching back to userspace, use a flushing CR3 write for the switch. In order to access the user_pcid_flush_mask we use PER_CPU storage, which means the previously established SWAPGS vs CR3 ordering is now mandatory and required. Having to do this memory access does require additional registers, most sites have a functioning stack and we can spill one (RAX), sites without functional stack need to otherwise provide the second scratch register. Note: PCID is generally available on Intel Sandybridge and later CPUs. Note: Up until this point TLB flushing was broken in this series. Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-04 22:07:59 +08:00
/* TLB state for the entry code */
OFFSET(TLB_STATE_user_pcid_flush_mask, tlb_state, user_pcid_flush_mask);
/* Layout info for cpu_entry_area */
OFFSET(CPU_ENTRY_AREA_entry_stack, cpu_entry_area, entry_stack_page);
DEFINE(SIZEOF_entry_stack, sizeof(struct entry_stack));
DEFINE(MASK_entry_stack, (~(sizeof(struct entry_stack) - 1)));
/* Offset for fields in tss_struct */
OFFSET(TSS_sp0, tss_struct, x86_tss.sp0);
OFFSET(TSS_sp1, tss_struct, x86_tss.sp1);
OFFSET(TSS_sp2, tss_struct, x86_tss.sp2);
}