pr to master #8
|
@ -628,7 +628,7 @@ class GroupNorm(Cell):
|
|||
_channel_check(channel, self.num_channels)
|
||||
x = self.reshape(x, (batch, self.num_groups, -1))
|
||||
mean = self.reduce_mean(x, 2)
|
||||
var = self.reduce_sum(self.square(x - mean), 2) / (channel * height * width / self.num_groups - 1)
|
||||
var = self.reduce_sum(self.square(x - mean), 2) / (channel * height * width / self.num_groups)
|
||||
std = self.sqrt(var + self.eps)
|
||||
x = (x - mean) / std
|
||||
x = self.reshape(x, (batch, channel, height, width))
|
||||
|
|
|
@ -5355,20 +5355,21 @@ class CTCGreedyDecoder(PrimitiveWithInfer):
|
|||
|
||||
Inputs:
|
||||
- **inputs** (Tensor) - The input Tensor must be a `3-D` tensor whose shape is
|
||||
:math:`(max_time, batch_size, num_classes)`. `num_classes` must be `num_labels + 1` classes, `num_labels`
|
||||
indicates the number of actual labels. Blank labels are reserved. Default blank label is `num_classes - 1`.
|
||||
Data type must be float32 or float64.
|
||||
- **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch_size)`.
|
||||
The type must be int32. Each value in the tensor must not greater than `max_time`.
|
||||
:math:`(\text{max_time}, \text{batch_size}, \text{num_classes})`. `num_classes` must be
|
||||
`num_labels + 1` classes, `num_labels` indicates the number of actual labels. Blank labels are reserved.
|
||||
Default blank label is `num_classes - 1`. Data type must be float32 or float64.
|
||||
- **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of
|
||||
:math:`(\text{batch_size})`. The type must be int32.
|
||||
Each value in the tensor must not greater than `max_time`.
|
||||
|
||||
Outputs:
|
||||
- **decoded_indices** (Tensor) - A tensor with shape of :math:`(total_decoded_outputs, 2)`.
|
||||
- **decoded_indices** (Tensor) - A tensor with shape of :math:`(\text{total_decoded_outputs}, 2)`.
|
||||
Data type is int64.
|
||||
- **decoded_values** (Tensor) - A tensor with shape of :math:`(total_decoded_outputs)`,
|
||||
- **decoded_values** (Tensor) - A tensor with shape of :math:`(\text{total_decoded_outputs})`,
|
||||
it stores the decoded classes. Data type is int64.
|
||||
- **decoded_shape** (Tensor) - The value of tensor is :math:`[batch_size, max_decoded_legth]`.
|
||||
- **decoded_shape** (Tensor) - The value of tensor is :math:`[\text{batch_size}, \text{max_decoded_legth}]`.
|
||||
Data type is int64.
|
||||
- **log_probability** (Tensor) - A tensor with shape of :math:`(batch_size, 1)`,
|
||||
- **log_probability** (Tensor) - A tensor with shape of :math:`(\text{batch_size}, 1)`,
|
||||
containing sequence log-probability, has the same type as `inputs`.
|
||||
|
||||
Examples:
|
||||
|
|
Loading…
Reference in New Issue