!6440 add sin cos gpu-op

Merge pull request !6440 from wukesong/gpu-sin-cos
This commit is contained in:
mindspore-ci-bot 2020-09-19 18:25:04 +08:00 committed by Gitee
commit f6f7815fa2
6 changed files with 132 additions and 0 deletions

View File

@ -95,6 +95,34 @@ __global__ void RsqrtKernel(half *input, half *output, size_t count) {
return;
}
template <typename T>
__global__ void SinKernel(T *input, T *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = sin(input[i]);
}
return;
}
template <>
__global__ void SinKernel(half *input, half *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = hsin(input[i]);
}
return;
}
template <typename T>
__global__ void CosKernel(T *input, T *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = cos(input[i]);
}
return;
}
template <>
__global__ void CosKernel(half *input, half *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = hcos(input[i]);
}
return;
}
template <typename T>
__global__ void ZeroslikeKernel(T *output, size_t count) {
T zero = 0.0;
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
@ -167,6 +195,16 @@ void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
return;
}
template <typename T>
void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
SinKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
return;
}
template <typename T>
void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
CosKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
return;
}
template <typename T>
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
RsqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
return;
@ -193,6 +231,8 @@ template void Negative<float>(float *input, float *output, size_t count, cudaStr
template void Reciprocal<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Square<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Sqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Sin<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Cos<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Rsqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Zeroslike<float>(float *output, size_t count, cudaStream_t cuda_stream);
template void Abs<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
@ -203,6 +243,8 @@ template void Negative<half>(half *input, half *output, size_t count, cudaStream
template void Reciprocal<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Square<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Sqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Sin<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Cos<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Rsqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Zeroslike<half>(half *output, size_t count, cudaStream_t cuda_stream);
template void Abs<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);

View File

@ -33,6 +33,10 @@ void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Abs(T *input, T *output, size_t count, cudaStream_t cuda_stream);

View File

@ -46,6 +46,14 @@ MS_REG_GPU_KERNEL_ONE(Sqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOut
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Rsqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
UnaryOpGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
UnaryOpGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),

View File

@ -36,6 +36,8 @@ enum UnaryOptype {
UNARY_OP_SQUARE,
UNARY_OP_SQRT,
UNARY_OP_RSQRT,
UNARY_OP_SIN,
UNARY_OP_COS,
UNARY_OP_ABS,
UNARY_OP_FLOOR,
UNARY_OP_INVALID_TYPE = 255
@ -48,6 +50,8 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY
{"Square", UNARY_OP_SQUARE},
{"Sqrt", UNARY_OP_SQRT},
{"Rsqrt", UNARY_OP_RSQRT},
{"Sin", UNARY_OP_SIN},
{"Cos", UNARY_OP_COS},
{"Abs", UNARY_OP_ABS},
{"Floor", UNARY_OP_FLOOR}};
template <typename T>
@ -100,6 +104,14 @@ class UnaryOpGpuKernel : public GpuKernel {
Rsqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_SIN: {
Sin(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_COS: {
Cos(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_ZEROSLIKE: {
Zeroslike(output_addr, output_size_ / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
return true;

View File

@ -0,0 +1,33 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cos():
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
output_ms = P.Cos()(Tensor(x_np))
output_np = np.cos(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)

View File

@ -0,0 +1,33 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sin():
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
output_ms = P.Sin()(Tensor(x_np))
output_np = np.sin(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)