!3745 Gpu support LayerNorm kernel

Merge pull request !3745 from chenweifeng/layernorm_axis
This commit is contained in:
mindspore-ci-bot 2020-07-30 21:10:58 +08:00 committed by Gitee
commit d8c5d8b4d8
3 changed files with 62 additions and 8 deletions

View File

@ -35,8 +35,8 @@ inline __device__ half my_pow(half a, double b) {
template <typename T>
inline __device__ void GammaAndBetaThreadReduce(const int &col, const int &row_dim, const int &col_dim,
const T &epsilon, const T *dy, const T *x, const T *mean, const T *var,
T *dg, T *db) {
const int &mean_dim, const T &epsilon, const T *dy, const T *x,
const T *mean, const T *var, T *dg, T *db) {
int loop_num = (row_dim + NUM_PER_THREAD_REDUCE - 1) / NUM_PER_THREAD_REDUCE;
for (int i = threadIdx.x; i < loop_num; i += blockDim.x) {
for (int j = 0; j < NUM_PER_THREAD_REDUCE; j++) {
@ -46,7 +46,8 @@ inline __device__ void GammaAndBetaThreadReduce(const int &col, const int &row_d
}
int pos = row * col_dim + col;
dg[0] += dy[pos] * my_pow(var[row] + epsilon, -0.5) * (x[pos] - mean[row]);
int mean_offset = pos / mean_dim;
dg[0] += dy[pos] * my_pow(var[mean_offset] + epsilon, -0.5) * (x[pos] - mean[mean_offset]);
db[0] += dy[pos];
}
}
@ -89,8 +90,9 @@ inline __device__ void GammaAndBetaBlockReduce(const int &col, const int &row_di
}
template <typename T>
__global__ void GammaAndBetaPropKernel(const int row_dim, const int col_dim, const T epsilon, const T *dy, const T *x,
const T *mean_addr, const T *var_addr, T *dg_addr, T *db_addr) {
__global__ void GammaAndBetaPropKernel(const int row_dim, const int col_dim, const int mean_dim, const T epsilon,
const T *dy, const T *x, const T *mean_addr, const T *var_addr, T *dg_addr,
T *db_addr) {
// row: [0:param_axis]
// col: [param_axis:]
// dg[i][j] = dy[i][j] * (var[i] + epsilon, -0.5) * (x[i][j] - mean[i])
@ -98,7 +100,7 @@ __global__ void GammaAndBetaPropKernel(const int row_dim, const int col_dim, con
for (int col = blockIdx.x; col < col_dim; col += gridDim.x) {
T dg = 0;
T db = 0;
GammaAndBetaThreadReduce(col, row_dim, col_dim, epsilon, dy, x, mean_addr, var_addr, &dg, &db);
GammaAndBetaThreadReduce(col, row_dim, col_dim, mean_dim, epsilon, dy, x, mean_addr, var_addr, &dg, &db);
GammaAndBetaWarpReduce(&dg, &db);
GammaAndBetaBlockReduce(col, row_dim, &dg, &db, dg_addr, db_addr);
}
@ -239,8 +241,12 @@ void LayerNormGrad(const int &row_dim, const int &col_dim, const int &param_dim,
mean, var, gamma, dx);
share_mem_size = thread_per_block / WARP_SIZE * 2 * sizeof(T);
GammaAndBetaPropKernel<<<col_dim, thread_per_block, share_mem_size, stream>>>(row_dim, col_dim, epsilon, dy, x, mean,
var, dg, db);
// GammaAndBetaPropKernel<<<col_dim, thread_per_block, share_mem_size, stream>>>(row_dim, col_dim, epsilon, dy, x,
// mean,
// var, dg, db);
int param_reduce_dim = row_dim * col_dim / param_dim;
GammaAndBetaPropKernel<<<param_dim, thread_per_block, share_mem_size, stream>>>(param_reduce_dim, param_dim, col_dim,
epsilon, dy, x, mean, var, dg, db);
}
template void LayerNormGrad(const int &row_dim, const int &col_dim, const int &param_dim, const float &epsilon,

View File

@ -193,3 +193,29 @@ def test_layernormgrad4():
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6)
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3)
assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-6, atol=1e-3)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_layernormgrad5():
begin_norm_axis = 2
begin_params_axis = 1
x_np = np.random.randn(128, 2, 16, 32).astype(np.float32)
dy_np = np.random.randn(128, 2, 16, 32).astype(np.float32)
gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32)
epsilon = 10e-12
dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis,
begin_params_axis)
dy_ms = Tensor(dy_np)
x_ms = Tensor(x_np)
var_ms = Tensor(var_np)
mean_ms = Tensor(mean_np)
gamma_ms = Tensor(gamma_np)
net = LayerNormGradNet(begin_norm_axis, begin_params_axis)
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms)
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6)
assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-6, atol=1e-3)
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3)

View File

@ -175,3 +175,25 @@ def test_layernorm2d_3():
assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-6)
assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-6)
assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-6)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_layernorm2d_4():
begin_norm_axis = 2
begin_params_axis = 1
np.random.seed(42)
x_np = np.random.randn(128, 2, 16, 32).astype(np.float32)
gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32)
beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32)
y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np)
x_ms = Tensor(x_np)
gamma_ms = Tensor(gamma_np)
beta_ms = Tensor(beta_np)
net = LayerNormNet(begin_norm_axis, begin_params_axis)
y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms)
assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-6)
assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-6)
assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-6)