data_parallel_grad_reducer
This commit is contained in:
parent
fcdc88cca9
commit
ce03ce5af2
|
@ -25,6 +25,8 @@ The entire code structure is as following:
|
||||||
WideDeep.py "Model structure"
|
WideDeep.py "Model structure"
|
||||||
callbacks.py "Callback class for training and evaluation"
|
callbacks.py "Callback class for training and evaluation"
|
||||||
metrics.py "Metric class"
|
metrics.py "Metric class"
|
||||||
|
|--- script/ "run shell dir"
|
||||||
|
run_multinpu_train.sh "run data parallel"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Train and evaluate model
|
### Train and evaluate model
|
||||||
|
|
|
@ -17,16 +17,18 @@
|
||||||
# bash run_multinpu_train.sh
|
# bash run_multinpu_train.sh
|
||||||
execute_path=$(pwd)
|
execute_path=$(pwd)
|
||||||
|
|
||||||
# export RANK_TABLE_FILE=${execute_path}/rank_table_8p.json
|
export RANK_SIZE=$1
|
||||||
# export RANK_SIZE=8
|
export EPOCH_SIZE=$2
|
||||||
# export MINDSPORE_HCCL_CONFIG_PATH=${execute_path}/rank_table_8p.json
|
export DATASET=$3
|
||||||
|
export RANK_TABLE_FILE=$4
|
||||||
|
export MINDSPORE_HCCL_CONFIG_PATH=$4
|
||||||
|
|
||||||
for((i=0;i<=7;i++));
|
for((i=0;i<=$RANK_SIZE;i++));
|
||||||
do
|
do
|
||||||
rm -rf ${execute_path}/device_$i/
|
rm -rf ${execute_path}/device_$i/
|
||||||
mkdir ${execute_path}/device_$i/
|
mkdir ${execute_path}/device_$i/
|
||||||
cd ${execute_path}/device_$i/ || exit
|
cd ${execute_path}/device_$i/ || exit
|
||||||
export RANK_ID=$i
|
export RANK_ID=$i
|
||||||
export DEVICE_ID=$i
|
export DEVICE_ID=$i
|
||||||
pytest -s ${execute_path}/train_and_test_multinpu.py >train_deep$i.log 2>&1 &
|
pytest -s ${execute_path}/train_and_test_multinpu.py --data_path=$DATASET --epochs=$EPOCH_SIZE >train_deep$i.log 2>&1 &
|
||||||
done
|
done
|
|
@ -17,6 +17,7 @@ callbacks
|
||||||
import time
|
import time
|
||||||
from mindspore.train.callback import Callback
|
from mindspore.train.callback import Callback
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
|
from mindspore.train import ParallelMode
|
||||||
|
|
||||||
def add_write(file_path, out_str):
|
def add_write(file_path, out_str):
|
||||||
"""
|
"""
|
||||||
|
@ -85,12 +86,15 @@ class EvalCallBack(Callback):
|
||||||
self.aucMetric = auc_metric
|
self.aucMetric = auc_metric
|
||||||
self.aucMetric.clear()
|
self.aucMetric.clear()
|
||||||
self.eval_file_name = config.eval_file_name
|
self.eval_file_name = config.eval_file_name
|
||||||
|
self.eval_values = []
|
||||||
|
|
||||||
def epoch_name(self, run_context):
|
def epoch_end(self, run_context):
|
||||||
"""
|
"""
|
||||||
epoch name
|
epoch end
|
||||||
"""
|
"""
|
||||||
self.aucMetric.clear()
|
self.aucMetric.clear()
|
||||||
|
parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||||
|
if parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
context.set_auto_parallel_context(strategy_ckpt_save_file="",
|
context.set_auto_parallel_context(strategy_ckpt_save_file="",
|
||||||
strategy_ckpt_load_file="./strategy_train.ckpt")
|
strategy_ckpt_load_file="./strategy_train.ckpt")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
@ -101,4 +105,5 @@ class EvalCallBack(Callback):
|
||||||
time_str = time.strftime("%Y-%m-%d %H:%M%S", time.localtime())
|
time_str = time.strftime("%Y-%m-%d %H:%M%S", time.localtime())
|
||||||
out_str = "{}==== EvalCallBack model.eval(): {}; eval_time: {}s".format(time_str, out.values(), eval_time)
|
out_str = "{}==== EvalCallBack model.eval(): {}; eval_time: {}s".format(time_str, out.values(), eval_time)
|
||||||
print(out_str)
|
print(out_str)
|
||||||
|
self.eval_values = out.values()
|
||||||
add_write(self.eval_file_name, out_str)
|
add_write(self.eval_file_name, out_str)
|
||||||
|
|
|
@ -17,11 +17,20 @@
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
|
from enum import Enum
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import mindspore.dataset.engine as de
|
import mindspore.dataset.engine as de
|
||||||
import mindspore.common.dtype as mstype
|
import mindspore.common.dtype as mstype
|
||||||
|
|
||||||
|
class DataType(Enum):
|
||||||
|
"""
|
||||||
|
Enumerate supported dataset format.
|
||||||
|
"""
|
||||||
|
MINDRECORD = 1
|
||||||
|
TFRECORD = 2
|
||||||
|
H5 = 3
|
||||||
|
|
||||||
|
|
||||||
class H5Dataset():
|
class H5Dataset():
|
||||||
"""
|
"""
|
||||||
|
@ -193,15 +202,60 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
|
||||||
ds = ds.repeat(epochs)
|
ds = ds.repeat(epochs)
|
||||||
return ds
|
return ds
|
||||||
|
|
||||||
|
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
|
||||||
|
line_per_sample=1000, rank_size=None, rank_id=None):
|
||||||
|
"""
|
||||||
|
Get dataset with mindrecord format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
directory (str): Dataset directory.
|
||||||
|
train_mode (bool): Whether dataset is use for train or eval (default=True).
|
||||||
|
epochs (int): Dataset epoch size (default=1).
|
||||||
|
batch_size (int): Dataset batch size (default=1000).
|
||||||
|
line_per_sample (int): The number of sample per line (default=1000).
|
||||||
|
rank_size (int): The number of device, not necessary for single device (default=None).
|
||||||
|
rank_id (int): Id of device, not necessary for single device (default=None).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dataset.
|
||||||
|
"""
|
||||||
|
file_prefix_name = 'train_input_part.mindrecord' if train_mode else 'test_input_part.mindrecord'
|
||||||
|
file_suffix_name = '00' if train_mode else '0'
|
||||||
|
shuffle = train_mode
|
||||||
|
|
||||||
|
if rank_size is not None and rank_id is not None:
|
||||||
|
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
|
||||||
|
columns_list=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
|
||||||
|
num_parallel_workers=8)
|
||||||
|
else:
|
||||||
|
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
|
||||||
|
columns_list=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
shuffle=shuffle, num_parallel_workers=8)
|
||||||
|
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
|
||||||
|
ds = ds.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
|
||||||
|
np.array(y).flatten().reshape(batch_size, 39),
|
||||||
|
np.array(z).flatten().reshape(batch_size, 1))),
|
||||||
|
input_columns=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
columns_order=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
num_parallel_workers=8)
|
||||||
|
ds = ds.repeat(epochs)
|
||||||
|
return ds
|
||||||
|
|
||||||
|
|
||||||
def create_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
|
def create_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
|
||||||
is_tf_dataset=True, line_per_sample=1000, rank_size=None, rank_id=None):
|
data_type=DataType.TFRECORD, line_per_sample=1000, rank_size=None, rank_id=None):
|
||||||
"""
|
"""
|
||||||
create_dataset
|
create_dataset
|
||||||
"""
|
"""
|
||||||
if is_tf_dataset:
|
if data_type == DataType.TFRECORD:
|
||||||
return _get_tf_dataset(data_dir, train_mode, epochs, batch_size,
|
return _get_tf_dataset(data_dir, train_mode, epochs, batch_size,
|
||||||
line_per_sample, rank_size=rank_size, rank_id=rank_id)
|
line_per_sample, rank_size=rank_size, rank_id=rank_id)
|
||||||
|
if data_type == DataType.MINDRECORD:
|
||||||
|
return _get_mindrecord_dataset(data_dir, train_mode, epochs,
|
||||||
|
batch_size, line_per_sample,
|
||||||
|
rank_size, rank_id)
|
||||||
|
|
||||||
if rank_size > 1:
|
if rank_size > 1:
|
||||||
raise RuntimeError("please use tfrecord dataset.")
|
raise RuntimeError("please use tfrecord dataset.")
|
||||||
return _get_h5_dataset(data_dir, train_mode, epochs, batch_size)
|
return _get_h5_dataset(data_dir, train_mode, epochs, batch_size)
|
||||||
|
|
|
@ -14,7 +14,7 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""wide and deep model"""
|
"""wide and deep model"""
|
||||||
from mindspore import nn
|
from mindspore import nn
|
||||||
from mindspore import Tensor, Parameter, ParameterTuple
|
from mindspore import Parameter, ParameterTuple
|
||||||
import mindspore.common.dtype as mstype
|
import mindspore.common.dtype as mstype
|
||||||
from mindspore.ops import functional as F
|
from mindspore.ops import functional as F
|
||||||
from mindspore.ops import composite as C
|
from mindspore.ops import composite as C
|
||||||
|
@ -24,6 +24,10 @@ from mindspore.nn.optim import Adam, FTRL
|
||||||
# from mindspore.nn.metrics import Metric
|
# from mindspore.nn.metrics import Metric
|
||||||
from mindspore.common.initializer import Uniform, initializer
|
from mindspore.common.initializer import Uniform, initializer
|
||||||
# from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
# from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||||
|
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_mirror_mean
|
||||||
|
from mindspore.train.parallel_utils import ParallelMode
|
||||||
|
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
||||||
|
from mindspore.communication.management import get_group_size
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
np_type = np.float32
|
np_type = np.float32
|
||||||
|
@ -42,8 +46,7 @@ def init_method(method, shape, name, max_val=1.0):
|
||||||
elif method == 'zero':
|
elif method == 'zero':
|
||||||
params = Parameter(initializer("zeros", shape, ms_type), name=name)
|
params = Parameter(initializer("zeros", shape, ms_type), name=name)
|
||||||
elif method == "normal":
|
elif method == "normal":
|
||||||
params = Parameter(Tensor(np.random.normal(
|
params = Parameter(initializer("normal", shape, ms_type), name=name)
|
||||||
loc=0.0, scale=0.01, size=shape).astype(dtype=np_type)), name=name)
|
|
||||||
return params
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
@ -66,8 +69,8 @@ def init_var_dict(init_args, in_vars):
|
||||||
var_map[key] = Parameter(initializer(
|
var_map[key] = Parameter(initializer(
|
||||||
"zeros", shape, ms_type), name=key)
|
"zeros", shape, ms_type), name=key)
|
||||||
elif method == 'normal':
|
elif method == 'normal':
|
||||||
var_map[key] = Parameter(Tensor(np.random.normal(
|
var_map[key] = Parameter(initializer(
|
||||||
loc=0.0, scale=0.01, size=shape).astype(dtype=np_type)), name=key)
|
"normal", shape, ms_type), name=key)
|
||||||
return var_map
|
return var_map
|
||||||
|
|
||||||
|
|
||||||
|
@ -132,6 +135,9 @@ class WideDeepModel(nn.Cell):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(WideDeepModel, self).__init__()
|
super(WideDeepModel, self).__init__()
|
||||||
self.batch_size = config.batch_size
|
self.batch_size = config.batch_size
|
||||||
|
parallel_mode = _get_parallel_mode()
|
||||||
|
if parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
|
self.batch_size = self.batch_size * get_group_size()
|
||||||
self.field_size = config.field_size
|
self.field_size = config.field_size
|
||||||
self.vocab_size = config.vocab_size
|
self.vocab_size = config.vocab_size
|
||||||
self.emb_dim = config.emb_dim
|
self.emb_dim = config.emb_dim
|
||||||
|
@ -285,6 +291,18 @@ class TrainStepWrap(nn.Cell):
|
||||||
self.loss_net_w = IthOutputCell(network, output_index=0)
|
self.loss_net_w = IthOutputCell(network, output_index=0)
|
||||||
self.loss_net_d = IthOutputCell(network, output_index=1)
|
self.loss_net_d = IthOutputCell(network, output_index=1)
|
||||||
|
|
||||||
|
self.reducer_flag = False
|
||||||
|
self.grad_reducer_w = None
|
||||||
|
self.grad_reducer_d = None
|
||||||
|
parallel_mode = _get_parallel_mode()
|
||||||
|
self.reducer_flag = parallel_mode in (ParallelMode.DATA_PARALLEL,
|
||||||
|
ParallelMode.HYBRID_PARALLEL)
|
||||||
|
if self.reducer_flag:
|
||||||
|
mean = _get_mirror_mean()
|
||||||
|
degree = _get_device_num()
|
||||||
|
self.grad_reducer_w = DistributedGradReducer(self.optimizer_w.parameters, mean, degree)
|
||||||
|
self.grad_reducer_d = DistributedGradReducer(self.optimizer_d.parameters, mean, degree)
|
||||||
|
|
||||||
def construct(self, batch_ids, batch_wts, label):
|
def construct(self, batch_ids, batch_wts, label):
|
||||||
weights_w = self.weights_w
|
weights_w = self.weights_w
|
||||||
weights_d = self.weights_d
|
weights_d = self.weights_d
|
||||||
|
@ -295,6 +313,9 @@ class TrainStepWrap(nn.Cell):
|
||||||
label, sens_w)
|
label, sens_w)
|
||||||
grads_d = self.grad_d(self.loss_net_d, weights_d)(batch_ids, batch_wts,
|
grads_d = self.grad_d(self.loss_net_d, weights_d)(batch_ids, batch_wts,
|
||||||
label, sens_d)
|
label, sens_d)
|
||||||
|
if self.reducer_flag:
|
||||||
|
grads_w = self.grad_reducer_w(grads_w)
|
||||||
|
grads_d = self.grad_reducer_d(grads_d)
|
||||||
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(loss_d,
|
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(loss_d,
|
||||||
self.optimizer_d(grads_d))
|
self.optimizer_d(grads_d))
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,108 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_multinpu."""
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from mindspore import Model, context
|
||||||
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
||||||
|
from mindspore.train import ParallelMode
|
||||||
|
from mindspore.communication.management import get_rank, get_group_size, init
|
||||||
|
from mindspore.parallel import _cost_model_context as cost_model_context
|
||||||
|
from mindspore.nn.wrap.cell_wrapper import VirtualDatasetCellTriple
|
||||||
|
|
||||||
|
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||||
|
from src.callbacks import LossCallBack, EvalCallBack
|
||||||
|
from src.datasets import create_dataset
|
||||||
|
from src.metrics import AUCMetric
|
||||||
|
from src.config import WideDeepConfig
|
||||||
|
|
||||||
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||||
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, mirror_mean=True)
|
||||||
|
cost_model_context.set_cost_model_context(multi_subgraphs=True)
|
||||||
|
init()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_WideDeep_net(config):
|
||||||
|
WideDeep_net = WideDeepModel(config)
|
||||||
|
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||||
|
loss_net = VirtualDatasetCellTriple(loss_net)
|
||||||
|
train_net = TrainStepWrap(loss_net)
|
||||||
|
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||||
|
eval_net = VirtualDatasetCellTriple(eval_net)
|
||||||
|
return train_net, eval_net
|
||||||
|
|
||||||
|
|
||||||
|
class ModelBuilder():
|
||||||
|
"""
|
||||||
|
ModelBuilder
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_hook(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_train_hook(self):
|
||||||
|
hooks = []
|
||||||
|
callback = LossCallBack()
|
||||||
|
hooks.append(callback)
|
||||||
|
if int(os.getenv('DEVICE_ID')) == 0:
|
||||||
|
pass
|
||||||
|
return hooks
|
||||||
|
|
||||||
|
def get_net(self, config):
|
||||||
|
return get_WideDeep_net(config)
|
||||||
|
|
||||||
|
|
||||||
|
def test_train_eval():
|
||||||
|
"""
|
||||||
|
test_train_eval
|
||||||
|
"""
|
||||||
|
config = WideDeepConfig()
|
||||||
|
data_path = config.data_path
|
||||||
|
batch_size = config.batch_size
|
||||||
|
epochs = config.epochs
|
||||||
|
print("epochs is {}".format(epochs))
|
||||||
|
ds_train = create_dataset(data_path, train_mode=True, epochs=epochs,
|
||||||
|
batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size())
|
||||||
|
ds_eval = create_dataset(data_path, train_mode=False, epochs=epochs + 1,
|
||||||
|
batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size())
|
||||||
|
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
|
||||||
|
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
||||||
|
|
||||||
|
net_builder = ModelBuilder()
|
||||||
|
|
||||||
|
train_net, eval_net = net_builder.get_net(config)
|
||||||
|
train_net.set_train()
|
||||||
|
auc_metric = AUCMetric()
|
||||||
|
|
||||||
|
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
||||||
|
|
||||||
|
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
|
||||||
|
|
||||||
|
callback = LossCallBack(config=config)
|
||||||
|
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
|
||||||
|
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
|
||||||
|
directory=config.ckpt_path, config=ckptconfig)
|
||||||
|
model.train(epochs, ds_train,
|
||||||
|
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_train_eval()
|
|
@ -11,3 +11,4 @@ decorator >= 4.4.0
|
||||||
setuptools >= 40.8.0
|
setuptools >= 40.8.0
|
||||||
matplotlib >= 3.1.3 # for ut test
|
matplotlib >= 3.1.3 # for ut test
|
||||||
opencv-python >= 4.2.0.32 # for ut test
|
opencv-python >= 4.2.0.32 # for ut test
|
||||||
|
sklearn >= 0.0 # for st test
|
||||||
|
|
|
@ -0,0 +1,22 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
LOCAL_HIAI=/usr/local/Ascend
|
||||||
|
export TBE_IMPL_PATH=${LOCAL_HIAI}/runtime/ops/op_impl/built-in/ai_core/tbe/impl/:${TBE_IMPL_PATH}
|
||||||
|
export LD_LIBRARY_PATH=${LOCAL_HIAI}/runtime/lib64/:${LOCAL_HIAI}/add-ons/:${LD_LIBRARY_PATH}
|
||||||
|
export PATH=${LOCAL_HIAI}/runtime/ccec_compiler/bin/:${PATH}
|
||||||
|
export PYTHONPATH=${LOCAL_HIAI}/runtime/ops/op_impl/built-in/ai_core/tbe/:${PYTHONPATH}
|
||||||
|
export DEVICE_MEMORY_CAPACITY=1073741824000
|
||||||
|
export NOT_FULLY_USE_DEVICES=off
|
|
@ -0,0 +1,92 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" config. """
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def argparse_init():
|
||||||
|
"""
|
||||||
|
argparse_init
|
||||||
|
"""
|
||||||
|
parser = argparse.ArgumentParser(description='WideDeep')
|
||||||
|
parser.add_argument("--data_path", type=str, default="./test_raw_data/")
|
||||||
|
parser.add_argument("--epochs", type=int, default=15)
|
||||||
|
parser.add_argument("--batch_size", type=int, default=16000)
|
||||||
|
parser.add_argument("--eval_batch_size", type=int, default=16000)
|
||||||
|
parser.add_argument("--field_size", type=int, default=39)
|
||||||
|
parser.add_argument("--vocab_size", type=int, default=184965)
|
||||||
|
parser.add_argument("--emb_dim", type=int, default=80)
|
||||||
|
parser.add_argument("--deep_layer_dim", type=int, nargs='+', default=[1024, 512, 256, 128])
|
||||||
|
parser.add_argument("--deep_layer_act", type=str, default='relu')
|
||||||
|
parser.add_argument("--keep_prob", type=float, default=1.0)
|
||||||
|
|
||||||
|
parser.add_argument("--output_path", type=str, default="./output/")
|
||||||
|
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/")
|
||||||
|
parser.add_argument("--eval_file_name", type=str, default="eval.log")
|
||||||
|
parser.add_argument("--loss_file_name", type=str, default="loss.log")
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
class WideDeepConfig():
|
||||||
|
"""
|
||||||
|
WideDeepConfig
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
self.data_path = "/home/workspace/mindspore_dataset/criteo_data/mindrecord"
|
||||||
|
self.epochs = 1
|
||||||
|
self.batch_size = 16000
|
||||||
|
self.eval_batch_size = 16000
|
||||||
|
self.field_size = 39
|
||||||
|
self.vocab_size = 184968
|
||||||
|
self.emb_dim = 64
|
||||||
|
self.deep_layer_dim = [1024, 512, 256, 128]
|
||||||
|
self.deep_layer_act = 'relu'
|
||||||
|
self.weight_bias_init = ['normal', 'normal']
|
||||||
|
self.emb_init = 'normal'
|
||||||
|
self.init_args = [-0.01, 0.01]
|
||||||
|
self.dropout_flag = False
|
||||||
|
self.keep_prob = 1.0
|
||||||
|
self.l2_coef = 8e-5
|
||||||
|
|
||||||
|
self.output_path = "./output"
|
||||||
|
self.eval_file_name = "eval.log"
|
||||||
|
self.loss_file_name = "loss.log"
|
||||||
|
self.ckpt_path = "./checkpoints/"
|
||||||
|
|
||||||
|
def argparse_init(self):
|
||||||
|
"""
|
||||||
|
argparse_init
|
||||||
|
"""
|
||||||
|
parser = argparse_init()
|
||||||
|
args, _ = parser.parse_known_args()
|
||||||
|
self.data_path = args.data_path
|
||||||
|
self.epochs = args.epochs
|
||||||
|
self.batch_size = args.batch_size
|
||||||
|
self.eval_batch_size = args.eval_batch_size
|
||||||
|
self.field_size = args.field_size
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
self.emb_dim = args.emb_dim
|
||||||
|
self.deep_layer_dim = args.deep_layer_dim
|
||||||
|
self.deep_layer_act = args.deep_layer_act
|
||||||
|
self.keep_prob = args.keep_prob
|
||||||
|
self.weight_bias_init = ['normal', 'normal']
|
||||||
|
self.emb_init = 'normal'
|
||||||
|
self.init_args = [-0.01, 0.01]
|
||||||
|
self.dropout_flag = False
|
||||||
|
self.l2_coef = 8e-5
|
||||||
|
|
||||||
|
self.output_path = args.output_path
|
||||||
|
self.eval_file_name = args.eval_file_name
|
||||||
|
self.loss_file_name = args.loss_file_name
|
||||||
|
self.ckpt_path = args.ckpt_path
|
|
@ -0,0 +1,116 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_imagenet."""
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
from enum import Enum
|
||||||
|
import numpy as np
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
|
||||||
|
class DataType(Enum):
|
||||||
|
"""
|
||||||
|
Enumerate supported dataset format.
|
||||||
|
"""
|
||||||
|
MINDRECORD = 1
|
||||||
|
TFRECORD = 2
|
||||||
|
H5 = 3
|
||||||
|
|
||||||
|
def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
|
||||||
|
line_per_sample=1000, rank_size=None, rank_id=None):
|
||||||
|
"""
|
||||||
|
get_tf_dataset
|
||||||
|
"""
|
||||||
|
dataset_files = []
|
||||||
|
file_prefix_name = 'train' if train_mode else 'test'
|
||||||
|
shuffle = train_mode
|
||||||
|
for (dirpath, _, filenames) in os.walk(data_dir):
|
||||||
|
for filename in filenames:
|
||||||
|
if file_prefix_name in filename and "tfrecord" in filename:
|
||||||
|
dataset_files.append(os.path.join(dirpath, filename))
|
||||||
|
schema = de.Schema()
|
||||||
|
schema.add_column('feat_ids', de_type=mstype.int32)
|
||||||
|
schema.add_column('feat_vals', de_type=mstype.float32)
|
||||||
|
schema.add_column('label', de_type=mstype.float32)
|
||||||
|
if rank_size is not None and rank_id is not None:
|
||||||
|
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8,
|
||||||
|
num_shards=rank_size, shard_id=rank_id, shard_equal_rows=True)
|
||||||
|
else:
|
||||||
|
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8)
|
||||||
|
ds = ds.batch(int(batch_size / line_per_sample),
|
||||||
|
drop_remainder=True)
|
||||||
|
ds = ds.map(operations=(lambda x, y, z: (
|
||||||
|
np.array(x).flatten().reshape(batch_size, 39),
|
||||||
|
np.array(y).flatten().reshape(batch_size, 39),
|
||||||
|
np.array(z).flatten().reshape(batch_size, 1))),
|
||||||
|
input_columns=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
columns_order=['feat_ids', 'feat_vals', 'label'], num_parallel_workers=8)
|
||||||
|
#if train_mode:
|
||||||
|
ds = ds.repeat(epochs)
|
||||||
|
return ds
|
||||||
|
|
||||||
|
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
|
||||||
|
line_per_sample=1000, rank_size=None, rank_id=None):
|
||||||
|
"""
|
||||||
|
Get dataset with mindrecord format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
directory (str): Dataset directory.
|
||||||
|
train_mode (bool): Whether dataset is use for train or eval (default=True).
|
||||||
|
epochs (int): Dataset epoch size (default=1).
|
||||||
|
batch_size (int): Dataset batch size (default=1000).
|
||||||
|
line_per_sample (int): The number of sample per line (default=1000).
|
||||||
|
rank_size (int): The number of device, not necessary for single device (default=None).
|
||||||
|
rank_id (int): Id of device, not necessary for single device (default=None).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dataset.
|
||||||
|
"""
|
||||||
|
file_prefix_name = 'train_input_part.mindrecord' if train_mode else 'test_input_part.mindrecord'
|
||||||
|
file_suffix_name = '00' if train_mode else '0'
|
||||||
|
shuffle = train_mode
|
||||||
|
|
||||||
|
if rank_size is not None and rank_id is not None:
|
||||||
|
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
|
||||||
|
columns_list=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
|
||||||
|
num_parallel_workers=8)
|
||||||
|
else:
|
||||||
|
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
|
||||||
|
columns_list=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
shuffle=shuffle, num_parallel_workers=8)
|
||||||
|
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
|
||||||
|
ds = ds.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
|
||||||
|
np.array(y).flatten().reshape(batch_size, 39),
|
||||||
|
np.array(z).flatten().reshape(batch_size, 1))),
|
||||||
|
input_columns=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
columns_order=['feat_ids', 'feat_vals', 'label'],
|
||||||
|
num_parallel_workers=8)
|
||||||
|
ds = ds.repeat(epochs)
|
||||||
|
return ds
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
|
||||||
|
data_type=DataType.TFRECORD, line_per_sample=1000, rank_size=None, rank_id=None):
|
||||||
|
"""
|
||||||
|
create_dataset
|
||||||
|
"""
|
||||||
|
if data_type == DataType.TFRECORD:
|
||||||
|
return _get_tf_dataset(data_dir, train_mode, epochs, batch_size,
|
||||||
|
line_per_sample, rank_size=rank_size, rank_id=rank_id)
|
||||||
|
return _get_mindrecord_dataset(data_dir, train_mode, epochs,
|
||||||
|
batch_size, line_per_sample,
|
||||||
|
rank_size, rank_id)
|
|
@ -0,0 +1,108 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_multinpu."""
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from mindspore import Model, context
|
||||||
|
from mindspore.train.callback import TimeMonitor
|
||||||
|
from mindspore.train import ParallelMode
|
||||||
|
from mindspore.communication.management import get_rank, get_group_size, init
|
||||||
|
from mindspore.parallel import _cost_model_context as cost_model_context
|
||||||
|
from mindspore.nn.wrap.cell_wrapper import VirtualDatasetCellTriple
|
||||||
|
|
||||||
|
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||||
|
from src.callbacks import LossCallBack, EvalCallBack
|
||||||
|
from src.datasets import create_dataset, DataType
|
||||||
|
from src.metrics import AUCMetric
|
||||||
|
from src.config import WideDeepConfig
|
||||||
|
|
||||||
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||||
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, mirror_mean=True)
|
||||||
|
cost_model_context.set_cost_model_context(multi_subgraphs=True)
|
||||||
|
init()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_WideDeep_net(config):
|
||||||
|
WideDeep_net = WideDeepModel(config)
|
||||||
|
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||||
|
loss_net = VirtualDatasetCellTriple(loss_net)
|
||||||
|
train_net = TrainStepWrap(loss_net)
|
||||||
|
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||||
|
eval_net = VirtualDatasetCellTriple(eval_net)
|
||||||
|
return train_net, eval_net
|
||||||
|
|
||||||
|
|
||||||
|
class ModelBuilder():
|
||||||
|
"""
|
||||||
|
ModelBuilder
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_hook(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_train_hook(self):
|
||||||
|
hooks = []
|
||||||
|
callback = LossCallBack()
|
||||||
|
hooks.append(callback)
|
||||||
|
if int(os.getenv('DEVICE_ID')) == 0:
|
||||||
|
pass
|
||||||
|
return hooks
|
||||||
|
|
||||||
|
def get_net(self, config):
|
||||||
|
return get_WideDeep_net(config)
|
||||||
|
|
||||||
|
|
||||||
|
def test_train_eval():
|
||||||
|
"""
|
||||||
|
test_train_eval
|
||||||
|
"""
|
||||||
|
config = WideDeepConfig()
|
||||||
|
data_path = config.data_path
|
||||||
|
batch_size = config.batch_size
|
||||||
|
epochs = config.epochs
|
||||||
|
print("epochs is {}".format(epochs))
|
||||||
|
ds_train = create_dataset(data_path, train_mode=True, epochs=epochs, batch_size=batch_size,
|
||||||
|
data_type=DataType.MINDRECORD, rank_id=get_rank(), rank_size=get_group_size())
|
||||||
|
ds_eval = create_dataset(data_path, train_mode=False, epochs=epochs + 1, batch_size=batch_size,
|
||||||
|
data_type=DataType.MINDRECORD, rank_id=get_rank(), rank_size=get_group_size())
|
||||||
|
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
|
||||||
|
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
||||||
|
|
||||||
|
net_builder = ModelBuilder()
|
||||||
|
|
||||||
|
train_net, eval_net = net_builder.get_net(config)
|
||||||
|
train_net.set_train()
|
||||||
|
auc_metric = AUCMetric()
|
||||||
|
|
||||||
|
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
||||||
|
|
||||||
|
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
|
||||||
|
|
||||||
|
callback = LossCallBack(config=config)
|
||||||
|
context.set_auto_parallel_context(strategy_ckpt_save_file="./strategy_train.ckpt")
|
||||||
|
model.train(epochs, ds_train,
|
||||||
|
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback])
|
||||||
|
eval_values = list(eval_callback.eval_values)
|
||||||
|
assert eval_values[0] > 0.78
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_train_eval()
|
|
@ -0,0 +1,333 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""wide and deep model"""
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Parameter, ParameterTuple
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore.ops import functional as F
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
# from mindspore.nn import Dropout
|
||||||
|
from mindspore.nn.optim import Adam, FTRL
|
||||||
|
# from mindspore.nn.metrics import Metric
|
||||||
|
from mindspore.common.initializer import Uniform, initializer
|
||||||
|
# from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||||
|
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_mirror_mean
|
||||||
|
from mindspore.train.parallel_utils import ParallelMode
|
||||||
|
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
||||||
|
from mindspore.communication.management import get_group_size
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
np_type = np.float32
|
||||||
|
ms_type = mstype.float32
|
||||||
|
|
||||||
|
|
||||||
|
def init_method(method, shape, name, max_val=1.0):
|
||||||
|
'''
|
||||||
|
parameter init method
|
||||||
|
'''
|
||||||
|
if method in ['uniform']:
|
||||||
|
params = Parameter(initializer(
|
||||||
|
Uniform(max_val), shape, ms_type), name=name)
|
||||||
|
elif method == "one":
|
||||||
|
params = Parameter(initializer("ones", shape, ms_type), name=name)
|
||||||
|
elif method == 'zero':
|
||||||
|
params = Parameter(initializer("zeros", shape, ms_type), name=name)
|
||||||
|
elif method == "normal":
|
||||||
|
params = Parameter(initializer("normal", shape, ms_type), name=name)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def init_var_dict(init_args, in_vars):
|
||||||
|
'''
|
||||||
|
var init function
|
||||||
|
'''
|
||||||
|
var_map = {}
|
||||||
|
_, _max_val = init_args
|
||||||
|
for _, iterm in enumerate(in_vars):
|
||||||
|
key, shape, method = iterm
|
||||||
|
if key not in var_map.keys():
|
||||||
|
if method in ['random', 'uniform']:
|
||||||
|
var_map[key] = Parameter(initializer(
|
||||||
|
Uniform(_max_val), shape, ms_type), name=key)
|
||||||
|
elif method == "one":
|
||||||
|
var_map[key] = Parameter(initializer(
|
||||||
|
"ones", shape, ms_type), name=key)
|
||||||
|
elif method == "zero":
|
||||||
|
var_map[key] = Parameter(initializer(
|
||||||
|
"zeros", shape, ms_type), name=key)
|
||||||
|
elif method == 'normal':
|
||||||
|
var_map[key] = Parameter(initializer(
|
||||||
|
"normal", shape, ms_type), name=key)
|
||||||
|
return var_map
|
||||||
|
|
||||||
|
|
||||||
|
class DenseLayer(nn.Cell):
|
||||||
|
"""
|
||||||
|
Dense Layer for Deep Layer of WideDeep Model;
|
||||||
|
Containing: activation, matmul, bias_add;
|
||||||
|
Args:
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, input_dim, output_dim, weight_bias_init, act_str,
|
||||||
|
keep_prob=0.7, scale_coef=1.0, convert_dtype=True):
|
||||||
|
super(DenseLayer, self).__init__()
|
||||||
|
weight_init, bias_init = weight_bias_init
|
||||||
|
self.weight = init_method(
|
||||||
|
weight_init, [input_dim, output_dim], name="weight")
|
||||||
|
self.bias = init_method(bias_init, [output_dim], name="bias")
|
||||||
|
self.act_func = self._init_activation(act_str)
|
||||||
|
self.matmul = P.MatMul(transpose_b=False)
|
||||||
|
self.bias_add = P.BiasAdd()
|
||||||
|
self.cast = P.Cast()
|
||||||
|
#self.dropout = Dropout(keep_prob=keep_prob)
|
||||||
|
self.mul = P.Mul()
|
||||||
|
self.realDiv = P.RealDiv()
|
||||||
|
self.scale_coef = scale_coef
|
||||||
|
self.convert_dtype = convert_dtype
|
||||||
|
|
||||||
|
def _init_activation(self, act_str):
|
||||||
|
act_str = act_str.lower()
|
||||||
|
if act_str == "relu":
|
||||||
|
act_func = P.ReLU()
|
||||||
|
elif act_str == "sigmoid":
|
||||||
|
act_func = P.Sigmoid()
|
||||||
|
elif act_str == "tanh":
|
||||||
|
act_func = P.Tanh()
|
||||||
|
return act_func
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x = self.act_func(x)
|
||||||
|
# if self.training:
|
||||||
|
# x = self.dropout(x)
|
||||||
|
x = self.mul(x, self.scale_coef)
|
||||||
|
if self.convert_dtype:
|
||||||
|
x = self.cast(x, mstype.float16)
|
||||||
|
weight = self.cast(self.weight, mstype.float16)
|
||||||
|
wx = self.matmul(x, weight)
|
||||||
|
wx = self.cast(wx, mstype.float32)
|
||||||
|
else:
|
||||||
|
wx = self.matmul(x, self.weight)
|
||||||
|
wx = self.realDiv(wx, self.scale_coef)
|
||||||
|
output = self.bias_add(wx, self.bias)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class WideDeepModel(nn.Cell):
|
||||||
|
"""
|
||||||
|
From paper: " Wide & Deep Learning for Recommender Systems"
|
||||||
|
Args:
|
||||||
|
config (Class): The default config of Wide&Deep
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
super(WideDeepModel, self).__init__()
|
||||||
|
self.batch_size = config.batch_size
|
||||||
|
parallel_mode = _get_parallel_mode()
|
||||||
|
if parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
|
self.batch_size = self.batch_size * get_group_size()
|
||||||
|
self.field_size = config.field_size
|
||||||
|
self.vocab_size = config.vocab_size
|
||||||
|
self.emb_dim = config.emb_dim
|
||||||
|
self.deep_layer_dims_list = config.deep_layer_dim
|
||||||
|
self.deep_layer_act = config.deep_layer_act
|
||||||
|
self.init_args = config.init_args
|
||||||
|
self.weight_init, self.bias_init = config.weight_bias_init
|
||||||
|
self.weight_bias_init = config.weight_bias_init
|
||||||
|
self.emb_init = config.emb_init
|
||||||
|
self.drop_out = config.dropout_flag
|
||||||
|
self.keep_prob = config.keep_prob
|
||||||
|
self.deep_input_dims = self.field_size * self.emb_dim
|
||||||
|
self.layer_dims = self.deep_layer_dims_list + [1]
|
||||||
|
self.all_dim_list = [self.deep_input_dims] + self.layer_dims
|
||||||
|
|
||||||
|
init_acts = [('Wide_w', [self.vocab_size, 1], self.emb_init),
|
||||||
|
('V_l2', [self.vocab_size, self.emb_dim], self.emb_init),
|
||||||
|
('Wide_b', [1], self.emb_init)]
|
||||||
|
var_map = init_var_dict(self.init_args, init_acts)
|
||||||
|
self.wide_w = var_map["Wide_w"]
|
||||||
|
self.wide_b = var_map["Wide_b"]
|
||||||
|
self.embedding_table = var_map["V_l2"]
|
||||||
|
self.dense_layer_1 = DenseLayer(self.all_dim_list[0],
|
||||||
|
self.all_dim_list[1],
|
||||||
|
self.weight_bias_init,
|
||||||
|
self.deep_layer_act, convert_dtype=True)
|
||||||
|
self.dense_layer_2 = DenseLayer(self.all_dim_list[1],
|
||||||
|
self.all_dim_list[2],
|
||||||
|
self.weight_bias_init,
|
||||||
|
self.deep_layer_act, convert_dtype=True)
|
||||||
|
self.dense_layer_3 = DenseLayer(self.all_dim_list[2],
|
||||||
|
self.all_dim_list[3],
|
||||||
|
self.weight_bias_init,
|
||||||
|
self.deep_layer_act, convert_dtype=True)
|
||||||
|
self.dense_layer_4 = DenseLayer(self.all_dim_list[3],
|
||||||
|
self.all_dim_list[4],
|
||||||
|
self.weight_bias_init,
|
||||||
|
self.deep_layer_act, convert_dtype=True)
|
||||||
|
self.dense_layer_5 = DenseLayer(self.all_dim_list[4],
|
||||||
|
self.all_dim_list[5],
|
||||||
|
self.weight_bias_init,
|
||||||
|
self.deep_layer_act, convert_dtype=True)
|
||||||
|
|
||||||
|
self.gather_v2 = P.GatherV2().set_strategy(((1, 8), (1, 1)))
|
||||||
|
self.gather_v2_1 = P.GatherV2()
|
||||||
|
self.mul = P.Mul()
|
||||||
|
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
||||||
|
self.reshape = P.Reshape()
|
||||||
|
self.square = P.Square()
|
||||||
|
self.shape = P.Shape()
|
||||||
|
self.tile = P.Tile()
|
||||||
|
self.concat = P.Concat(axis=1)
|
||||||
|
self.cast = P.Cast()
|
||||||
|
|
||||||
|
def construct(self, id_hldr, wt_hldr):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
id_hldr: batch ids;
|
||||||
|
wt_hldr: batch weights;
|
||||||
|
"""
|
||||||
|
mask = self.reshape(wt_hldr, (self.batch_size, self.field_size, 1))
|
||||||
|
# Wide layer
|
||||||
|
wide_id_weight = self.gather_v2_1(self.wide_w, id_hldr, 0)
|
||||||
|
wx = self.mul(wide_id_weight, mask)
|
||||||
|
wide_out = self.reshape(self.reduce_sum(wx, 1) + self.wide_b, (-1, 1))
|
||||||
|
# Deep layer
|
||||||
|
deep_id_embs = self.gather_v2(self.embedding_table, id_hldr, 0)
|
||||||
|
vx = self.mul(deep_id_embs, mask)
|
||||||
|
deep_in = self.reshape(vx, (-1, self.field_size * self.emb_dim))
|
||||||
|
deep_in = self.dense_layer_1(deep_in)
|
||||||
|
deep_in = self.dense_layer_2(deep_in)
|
||||||
|
deep_in = self.dense_layer_3(deep_in)
|
||||||
|
deep_in = self.dense_layer_4(deep_in)
|
||||||
|
deep_out = self.dense_layer_5(deep_in)
|
||||||
|
out = wide_out + deep_out
|
||||||
|
return out, self.embedding_table
|
||||||
|
|
||||||
|
|
||||||
|
class NetWithLossClass(nn.Cell):
|
||||||
|
|
||||||
|
""""
|
||||||
|
Provide WideDeep training loss through network.
|
||||||
|
Args:
|
||||||
|
network (Cell): The training network
|
||||||
|
config (Class): WideDeep config
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, network, config):
|
||||||
|
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
||||||
|
self.network = network
|
||||||
|
self.l2_coef = config.l2_coef
|
||||||
|
self.loss = P.SigmoidCrossEntropyWithLogits()
|
||||||
|
self.square = P.Square().set_strategy(((1, get_group_size()),))
|
||||||
|
self.reduceMean_false = P.ReduceMean(keep_dims=False)
|
||||||
|
self.reduceSum_false = P.ReduceSum(keep_dims=False)
|
||||||
|
|
||||||
|
def construct(self, batch_ids, batch_wts, label):
|
||||||
|
predict, embedding_table = self.network(batch_ids, batch_wts)
|
||||||
|
log_loss = self.loss(predict, label)
|
||||||
|
wide_loss = self.reduceMean_false(log_loss)
|
||||||
|
l2_loss_v = self.reduceSum_false(self.square(embedding_table)) / 2
|
||||||
|
deep_loss = self.reduceMean_false(log_loss) + self.l2_coef * l2_loss_v
|
||||||
|
|
||||||
|
return wide_loss, deep_loss
|
||||||
|
|
||||||
|
|
||||||
|
class IthOutputCell(nn.Cell):
|
||||||
|
def __init__(self, network, output_index):
|
||||||
|
super(IthOutputCell, self).__init__()
|
||||||
|
self.network = network
|
||||||
|
self.output_index = output_index
|
||||||
|
|
||||||
|
def construct(self, x1, x2, x3):
|
||||||
|
predict = self.network(x1, x2, x3)[self.output_index]
|
||||||
|
return predict
|
||||||
|
|
||||||
|
|
||||||
|
class TrainStepWrap(nn.Cell):
|
||||||
|
"""
|
||||||
|
Encapsulation class of WideDeep network training.
|
||||||
|
Append Adam and FTRL optimizers to the training network after that construct
|
||||||
|
function can be called to create the backward graph.
|
||||||
|
Args:
|
||||||
|
network (Cell): the training network. Note that loss function should have been added.
|
||||||
|
sens (Number): The adjust parameter. Default: 1000.0
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, network, sens=1000.0):
|
||||||
|
super(TrainStepWrap, self).__init__()
|
||||||
|
self.network = network
|
||||||
|
self.network.set_train()
|
||||||
|
self.trainable_params = network.trainable_params()
|
||||||
|
weights_w = []
|
||||||
|
weights_d = []
|
||||||
|
for params in self.trainable_params:
|
||||||
|
if 'wide' in params.name:
|
||||||
|
weights_w.append(params)
|
||||||
|
else:
|
||||||
|
weights_d.append(params)
|
||||||
|
self.weights_w = ParameterTuple(weights_w)
|
||||||
|
self.weights_d = ParameterTuple(weights_d)
|
||||||
|
self.optimizer_w = FTRL(learning_rate=1e-2, params=self.weights_w,
|
||||||
|
l1=1e-8, l2=1e-8, initial_accum=1.0)
|
||||||
|
self.optimizer_d = Adam(
|
||||||
|
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||||
|
self.hyper_map = C.HyperMap()
|
||||||
|
self.grad_w = C.GradOperation('grad_w', get_by_list=True,
|
||||||
|
sens_param=True)
|
||||||
|
self.grad_d = C.GradOperation('grad_d', get_by_list=True,
|
||||||
|
sens_param=True)
|
||||||
|
self.sens = sens
|
||||||
|
self.loss_net_w = IthOutputCell(network, output_index=0)
|
||||||
|
self.loss_net_d = IthOutputCell(network, output_index=1)
|
||||||
|
|
||||||
|
self.reducer_flag = False
|
||||||
|
self.grad_reducer_w = None
|
||||||
|
self.grad_reducer_d = None
|
||||||
|
parallel_mode = _get_parallel_mode()
|
||||||
|
self.reducer_flag = parallel_mode in (ParallelMode.DATA_PARALLEL,
|
||||||
|
ParallelMode.HYBRID_PARALLEL)
|
||||||
|
if self.reducer_flag:
|
||||||
|
mean = _get_mirror_mean()
|
||||||
|
degree = _get_device_num()
|
||||||
|
self.grad_reducer_w = DistributedGradReducer(self.optimizer_w.parameters, mean, degree)
|
||||||
|
self.grad_reducer_d = DistributedGradReducer(self.optimizer_d.parameters, mean, degree)
|
||||||
|
|
||||||
|
def construct(self, batch_ids, batch_wts, label):
|
||||||
|
weights_w = self.weights_w
|
||||||
|
weights_d = self.weights_d
|
||||||
|
loss_w, loss_d = self.network(batch_ids, batch_wts, label)
|
||||||
|
sens_w = P.Fill()(P.DType()(loss_w), P.Shape()(loss_w), self.sens)
|
||||||
|
sens_d = P.Fill()(P.DType()(loss_d), P.Shape()(loss_d), self.sens)
|
||||||
|
grads_w = self.grad_w(self.loss_net_w, weights_w)(batch_ids, batch_wts,
|
||||||
|
label, sens_w)
|
||||||
|
grads_d = self.grad_d(self.loss_net_d, weights_d)(batch_ids, batch_wts,
|
||||||
|
label, sens_d)
|
||||||
|
if self.reducer_flag:
|
||||||
|
grads_w = self.grad_reducer_w(grads_w)
|
||||||
|
grads_d = self.grad_reducer_d(grads_d)
|
||||||
|
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(loss_d,
|
||||||
|
self.optimizer_d(grads_d))
|
||||||
|
|
||||||
|
|
||||||
|
class PredictWithSigmoid(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(PredictWithSigmoid, self).__init__()
|
||||||
|
self.network = network
|
||||||
|
self.sigmoid = P.Sigmoid()
|
||||||
|
|
||||||
|
def construct(self, batch_ids, batch_wts, labels):
|
||||||
|
logits, _, _, = self.network(batch_ids, batch_wts)
|
||||||
|
pred_probs = self.sigmoid(logits)
|
||||||
|
return logits, pred_probs, labels
|
|
@ -0,0 +1,65 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
set -e
|
||||||
|
BASE_PATH=$(cd "$(dirname $0)"; pwd)
|
||||||
|
CONFIG_PATH=/home/workspace/mindspore_config
|
||||||
|
export DEVICE_NUM=8
|
||||||
|
export RANK_SIZE=$DEVICE_NUM
|
||||||
|
unset SLOG_PRINT_TO_STDOUT
|
||||||
|
export MINDSPORE_HCCL_CONFIG_PATH=$CONFIG_PATH/hccl/rank_table_${DEVICE_NUM}p.json
|
||||||
|
CODE_DIR="./"
|
||||||
|
if [ -d ${BASE_PATH}/../../../../model_zoo/wide_and_deep ]; then
|
||||||
|
CODE_DIR=${BASE_PATH}/../../../../model_zoo/wide_and_deep
|
||||||
|
elif [ -d ${BASE_PATH}/../../model_zoo/wide_and_deep ]; then
|
||||||
|
CODE_DIR=${BASE_PATH}/../../model_zoo/wide_and_deep
|
||||||
|
else
|
||||||
|
echo "[ERROR] code dir is not found"
|
||||||
|
fi
|
||||||
|
echo $CODE_DIR
|
||||||
|
rm -rf ${BASE_PATH}/wide_and_deep
|
||||||
|
cp -r ${CODE_DIR} ${BASE_PATH}/wide_and_deep
|
||||||
|
cp -f ${BASE_PATH}/python_file_for_ci/train_and_test_multinpu_ci.py ${BASE_PATH}/wide_and_deep/train_and_test_multinpu_ci.py
|
||||||
|
cp -f ${BASE_PATH}/python_file_for_ci/__init__.py ${BASE_PATH}/wide_and_deep/__init__.py
|
||||||
|
cp -f ${BASE_PATH}/python_file_for_ci/config.py ${BASE_PATH}/wide_and_deep/src/config.py
|
||||||
|
cp -f ${BASE_PATH}/python_file_for_ci/datasets.py ${BASE_PATH}/wide_and_deep/src/datasets.py
|
||||||
|
cp -f ${BASE_PATH}/python_file_for_ci/wide_and_deep.py ${BASE_PATH}/wide_and_deep/src/wide_and_deep.py
|
||||||
|
source ${BASE_PATH}/env.sh
|
||||||
|
export PYTHONPATH=${BASE_PATH}/wide_and_deep/:$PYTHONPATH
|
||||||
|
process_pid=()
|
||||||
|
for((i=0; i<$DEVICE_NUM; i++)); do
|
||||||
|
rm -rf ${BASE_PATH}/wide_and_deep_auto_parallel${i}
|
||||||
|
mkdir ${BASE_PATH}/wide_and_deep_auto_parallel${i}
|
||||||
|
cd ${BASE_PATH}/wide_and_deep_auto_parallel${i}
|
||||||
|
export RANK_ID=${i}
|
||||||
|
export DEVICE_ID=${i}
|
||||||
|
echo "start training for device $i"
|
||||||
|
env > env$i.log
|
||||||
|
pytest -s -v ../wide_and_deep/train_and_test_multinpu_ci.py > train_and_test_multinpu_ci$i.log 2>&1 &
|
||||||
|
process_pid[${i}]=`echo $!`
|
||||||
|
done
|
||||||
|
|
||||||
|
for((i=0; i<${DEVICE_NUM}; i++)); do
|
||||||
|
wait ${process_pid[i]}
|
||||||
|
status=`echo $?`
|
||||||
|
if [ "${status}" != "0" ]; then
|
||||||
|
echo "[ERROR] test wide_and_deep semi auto parallel failed. status: ${status}"
|
||||||
|
exit 1
|
||||||
|
else
|
||||||
|
echo "[INFO] test wide_and_deep semi auto parallel success."
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
exit 0
|
|
@ -0,0 +1,27 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import os
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.env_single
|
||||||
|
def test_wide_and_deep():
|
||||||
|
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||||
|
ret = os.system(f"sh {sh_path}/run_wide_and_deep_auto_parallel.sh")
|
||||||
|
os.system(f"grep -E 'ERROR|error' {sh_path}/wide_and_deep_auto_parallel*/train*log -C 3")
|
||||||
|
assert ret == 0
|
|
@ -0,0 +1,114 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_multinpu."""
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
from mindspore import Model, context
|
||||||
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
||||||
|
from mindspore.train import ParallelMode
|
||||||
|
from mindspore.communication.management import get_rank, get_group_size, init
|
||||||
|
|
||||||
|
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||||
|
from src.callbacks import LossCallBack, EvalCallBack
|
||||||
|
from src.datasets import create_dataset
|
||||||
|
from src.metrics import AUCMetric
|
||||||
|
from src.config import WideDeepConfig
|
||||||
|
|
||||||
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||||
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
|
||||||
|
init()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_WideDeep_net(config):
|
||||||
|
WideDeep_net = WideDeepModel(config)
|
||||||
|
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||||
|
train_net = TrainStepWrap(loss_net)
|
||||||
|
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||||
|
return train_net, eval_net
|
||||||
|
|
||||||
|
|
||||||
|
class ModelBuilder():
|
||||||
|
"""
|
||||||
|
ModelBuilder
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_hook(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_train_hook(self):
|
||||||
|
hooks = []
|
||||||
|
callback = LossCallBack()
|
||||||
|
hooks.append(callback)
|
||||||
|
if int(os.getenv('DEVICE_ID')) == 0:
|
||||||
|
pass
|
||||||
|
return hooks
|
||||||
|
|
||||||
|
def get_net(self, config):
|
||||||
|
return get_WideDeep_net(config)
|
||||||
|
|
||||||
|
|
||||||
|
def test_train_eval():
|
||||||
|
"""
|
||||||
|
test_train_eval
|
||||||
|
"""
|
||||||
|
np.random.seed(1000)
|
||||||
|
config = WideDeepConfig()
|
||||||
|
data_path = config.data_path
|
||||||
|
batch_size = config.batch_size
|
||||||
|
epochs = config.epochs
|
||||||
|
print("epochs is {}".format(epochs))
|
||||||
|
ds_train = create_dataset(data_path, train_mode=True, epochs=epochs,
|
||||||
|
batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size())
|
||||||
|
ds_eval = create_dataset(data_path, train_mode=False, epochs=epochs + 1,
|
||||||
|
batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size())
|
||||||
|
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
|
||||||
|
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
||||||
|
|
||||||
|
net_builder = ModelBuilder()
|
||||||
|
|
||||||
|
train_net, eval_net = net_builder.get_net(config)
|
||||||
|
train_net.set_train()
|
||||||
|
auc_metric = AUCMetric()
|
||||||
|
|
||||||
|
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
||||||
|
|
||||||
|
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
|
||||||
|
|
||||||
|
callback = LossCallBack(config=config)
|
||||||
|
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
|
||||||
|
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
|
||||||
|
directory=config.ckpt_path, config=ckptconfig)
|
||||||
|
out = model.eval(ds_eval)
|
||||||
|
print("=====" * 5 + "model.eval() initialized: {}".format(out))
|
||||||
|
model.train(epochs, ds_train,
|
||||||
|
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb])
|
||||||
|
expect_out0 = [0.792634,0.799862,0.803324]
|
||||||
|
expect_out6 = [0.796580,0.803908,0.807262]
|
||||||
|
if get_rank() == 0:
|
||||||
|
assert np.allclose(eval_callback.eval_values, expect_out0)
|
||||||
|
if get_rank() == 6:
|
||||||
|
assert np.allclose(eval_callback.eval_values, expect_out6)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_train_eval()
|
Loading…
Reference in New Issue