!4865 Rewrite the REAMD.md in Wide&Deep model
Merge pull request !4865 from huangxinjing/wide-deep-readme
This commit is contained in:
commit
a86e17ff62
|
@ -1,135 +1,248 @@
|
|||
Recommendation Model
|
||||
## Overview
|
||||
This is an implementation of WideDeep as described in the [Wide & Deep Learning for Recommender System](https://arxiv.org/pdf/1606.07792.pdf) paper.
|
||||
# Contents
|
||||
- [Wide&Deep Description](#widedeep-description)
|
||||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Script Parameters](#training-script-parameters)
|
||||
- [Preprocess Scripts Parameters](#preprocess-script-parameters)
|
||||
- [Dataset Preparation](#dataset-preparation)
|
||||
- [Process the Real World Data](#process-the-real-world-data)
|
||||
- [Generate and Process the Synthetic Data](#generate-and-process-the-synthetic-data)
|
||||
- [Training Process](#training-process)
|
||||
- [SingleDevice](#singledevice)
|
||||
- [Distribute Training](#distribute-training)
|
||||
- [Parameter Server](#parameter-server)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#training-performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
WideDeep model jointly trained wide linear models and deep neural network, which combined the benefits of memorization and generalization for recommender systems.
|
||||
|
||||
## Requirements
|
||||
# [Wide&Deep Description](#contents)
|
||||
Wide&Deep model is a classical model in Recommendation and Click Prediction area. This is an implementation of Wide&Deep as described in the [Wide & Deep Learning for Recommender System](https://arxiv.org/pdf/1606.07792.pdf) paper.
|
||||
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
# [Model Architecture](#contents)
|
||||
Wide&Deep model jointly trained wide linear models and deep neural network, which combined the benefits of memorization and generalization for recommender systems.
|
||||
|
||||
- Place the raw dataset under a certain path, such as: ./recommendation_dataset/origin_data, if you use [criteo dataset](https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz), please downlowd the dataset and unzip it to ./recommendation_dataset/origin_data.
|
||||
Currently we support host-device mode with column partition and parameter server mode.
|
||||
|
||||
- Convert the dataset to mindrecord, command as follows:
|
||||
# [Dataset](#contents)
|
||||
|
||||
- [1] A dataset used in Guo H , Tang R , Ye Y , et al. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
- Hardware(Ascend or GPU)
|
||||
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](https://gitee.com/mindspore/mindspore)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/en/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/en/master/index.html)
|
||||
|
||||
|
||||
|
||||
# [Quick Start](#contents)
|
||||
|
||||
1. Clone the Code
|
||||
```
|
||||
python src/preprocess_data.py --data_path=./recommendation_dataset --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0
|
||||
git clone https://gitee.com/mindspore/mindspore.git
|
||||
cd mindspore/model_zoo/official/recommend/wide_and_deep
|
||||
```
|
||||
2. Download the Dataset
|
||||
|
||||
> Please refer to [1] to obtain the download link
|
||||
```bash
|
||||
mkdir -p data/origin_data && cd data/origin_data
|
||||
wget DATA_LINK
|
||||
tar -zxvf dac.tar.gz
|
||||
```
|
||||
3. Use this script to preprocess the data. This may take about one hour and the generated mindrecord data is under data/mindrecord.
|
||||
```bash
|
||||
python src/preprocess_data.py --data_path=./data/ --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0
|
||||
```
|
||||
|
||||
4. Start Training
|
||||
Once the dataset is ready, the model can be trained and evaluated on the single device(Ascend) by the command as follows:
|
||||
```bash
|
||||
python train_and_eval.py --data_path=./data/mindrecord --data_type=mindrecord
|
||||
```
|
||||
To evaluate the model, command as follows:
|
||||
```bash
|
||||
python eval.py --data_path=./data/mindrecord --data_type=mindrecord
|
||||
```
|
||||
|
||||
|
||||
# [Script Description](#contents)
|
||||
## [Script and Sample Code](#contents)
|
||||
```
|
||||
└── wide_and_deep
|
||||
├── eval.py
|
||||
├── README.md
|
||||
├── script
|
||||
│ ├── cluster_32p.json
|
||||
│ ├── common.sh
|
||||
│ ├── deploy_cluster.sh
|
||||
│ ├── run_auto_parallel_train_cluster.sh
|
||||
│ ├── run_auto_parallel_train.sh
|
||||
│ ├── run_multigpu_train.sh
|
||||
│ ├── run_multinpu_train.sh
|
||||
│ ├── run_parameter_server_train_cluster.sh
|
||||
│ ├── run_parameter_server_train.sh
|
||||
│ ├── run_standalone_train_for_gpu.sh
|
||||
│ └── start_cluster.sh
|
||||
├── src
|
||||
│ ├── callbacks.py
|
||||
│ ├── config.py
|
||||
│ ├── datasets.py
|
||||
│ ├── generate_synthetic_data.py
|
||||
│ ├── __init__.py
|
||||
│ ├── metrics.py
|
||||
│ ├── preprocess_data.py
|
||||
│ ├── process_data.py
|
||||
│ └── wide_and_deep.py
|
||||
├── train_and_eval_auto_parallel.py
|
||||
├── train_and_eval_distribute.py
|
||||
├── train_and_eval_parameter_server.py
|
||||
├── train_and_eval.py
|
||||
└── train.py
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
||||
### [Training Script Parameters](#contents)
|
||||
|
||||
The parameters is same for ``train.py``,``train_and_eval.py`` ,``train_and_eval_distribute.py`` and ``train_and_eval_auto_parallel.py``
|
||||
|
||||
|
||||
```
|
||||
Arguments:
|
||||
* `--data_path` : The path of the data file.
|
||||
* `--dense_dim` : The number of your continues fields.
|
||||
* `--slot_dim` : The number of your sparse fields, it can also be called category features.
|
||||
* `--threshold` : Word frequency below this value will be regarded as OOV. It aims to reduce the vocab size.
|
||||
* `--train_line_count`: The number of examples in your dataset.
|
||||
* `--skip_id_convert`: 0 or 1. If set 1, the code will skip the id convert, regarding the original id as the final id.
|
||||
usage: train.py [-h] [--device_target {Ascend,GPU}] [--data_path DATA_PATH]
|
||||
[--epochs EPOCHS] [--full_batch FULL_BATCH]
|
||||
[--batch_size BATCH_SIZE] [--eval_batch_size EVAL_BATCH_SIZE]
|
||||
[--field_size FIELD_SIZE] [--vocab_size VOCAB_SIZE]
|
||||
[--emb_dim EMB_DIM]
|
||||
[--deep_layer_dim DEEP_LAYER_DIM [DEEP_LAYER_DIM ...]]
|
||||
[--deep_layer_act DEEP_LAYER_ACT] [--keep_prob KEEP_PROB]
|
||||
[--dropout_flag DROPOUT_FLAG] [--output_path OUTPUT_PATH]
|
||||
[--ckpt_path CKPT_PATH] [--eval_file_name EVAL_FILE_NAME]
|
||||
[--loss_file_name LOSS_FILE_NAME]
|
||||
[--host_device_mix HOST_DEVICE_MIX]
|
||||
[--dataset_type DATASET_TYPE]
|
||||
[--parameter_server PARAMETER_SERVER]
|
||||
|
||||
|
||||
## Dataset
|
||||
The common used benchmark datasets are used for model training and evaluation.
|
||||
optional arguments:
|
||||
--device_target {Ascend,GPU} device where the code will be implemented. (Default:Ascend)
|
||||
--data_path DATA_PATH This should be set to the same directory given to the
|
||||
data_download's data_dir argument
|
||||
--epochs EPOCHS Total train epochs. (Default:15)
|
||||
--full_batch FULL_BATCH Enable loading the full batch. (Default:False)
|
||||
--batch_size BATCH_SIZE Training batch size.(Default:16000)
|
||||
--eval_batch_size Eval batch size.(Default:16000)
|
||||
--field_size The number of features.(Default:39)
|
||||
--vocab_size The total features of dataset.(Default:200000)
|
||||
--emb_dim The dense embedding dimension of sparse feature.(Default:80)
|
||||
--deep_layer_dim The dimension of all deep layers.(Default:[1024,512,256,128])
|
||||
--deep_layer_act The activation function of all deep layers.(Default:'relu')
|
||||
--keep_prob The keep rate in dropout layer.(Default:1.0)
|
||||
--dropout_flag Enable dropout.(Default:0)
|
||||
--output_path Deprecated
|
||||
--ckpt_path The location of the checkpoint file.(Defalut:./checkpoints/)
|
||||
--eval_file_name Eval output file.(Default:eval.og)
|
||||
--loss_file_name Loss output file.(Default:loss.log)
|
||||
--host_device_mix Enable host device mode or not.(Default:0)
|
||||
--dataset_type The data type of the training files, chosen from tfrecord/mindrecord/hd5.(Default:tfrecord)
|
||||
--parameter_server Open parameter server of not.(Default:0)
|
||||
```
|
||||
### [Preprocess Scripts Parameters](#contents)
|
||||
```
|
||||
usage: generate_synthetic_data.py [-h] [--output_file OUTPUT_FILE]
|
||||
[--label_dim LABEL_DIM]
|
||||
[--number_examples NUMBER_EXAMPLES]
|
||||
[--dense_dim DENSE_DIM]
|
||||
[--slot_dim SLOT_DIM]
|
||||
[--vocabulary_size VOCABULARY_SIZE]
|
||||
[--random_slot_values RANDOM_SLOT_VALUES]
|
||||
optional arguments:
|
||||
--output_file The output path of the generated file.(Default: ./train.txt)
|
||||
--label_dim The label category. (Default:2)
|
||||
--number_examples The row numbers of the generated file. (Default:4000000)
|
||||
--dense_dim The number of the continue feature.(Default:13)
|
||||
--slot_dim The number of the category features.(Default:26)
|
||||
--vocabulary_size The vocabulary size of the total dataset.(Default:400000000)
|
||||
--random_slot_values 0 or 1. If 1, the id is generated by the random. If 0, the id is set by the row_index mod part_size, where part_size is the vocab size for each slot
|
||||
```
|
||||
|
||||
```
|
||||
usage: preprocess_data.py [-h]
|
||||
[--data_path DATA_PATH] [--dense_dim DENSE_DIM]
|
||||
[--slot_dim SLOT_DIM] [--threshold THRESHOLD]
|
||||
[--train_line_count TRAIN_LINE_COUNT]
|
||||
[--skip_id_convert {0,1}]
|
||||
|
||||
--data_path The path of the data file.
|
||||
--dense_dim The number of your continues fields.(default: 13)
|
||||
--slot_dim The number of your sparse fields, it can also be called category features.(default: 26)
|
||||
--threshold Word frequency below this value will be regarded as OOV. It aims to reduce the vocab size. (default: 100)
|
||||
--train_line_count The number of examples in your dataset.
|
||||
--skip_id_convert 0 or 1. If set 1, the code will skip the id convert, regarding the original id as the final id.(default: 0)
|
||||
```
|
||||
|
||||
## [Dataset Preparation](#contents)
|
||||
|
||||
### [Process the Real World Data](#content)
|
||||
|
||||
|
||||
### Generate the synthetic Data
|
||||
|
||||
The following command will generate 40 million lines of click data, in the format of "label\tdense_feature[0]\tdense_feature[1]...\tsparse_feature[0]\tsparse_feature[1]...".
|
||||
|
||||
1. Download the Dataset and place the raw dataset under a certain path, such as: ./data/origin_data
|
||||
```bash
|
||||
mkdir -p data/origin_data && cd data/origin_data
|
||||
wget DATA_LINK
|
||||
tar -zxvf dac.tar.gz
|
||||
```
|
||||
> Please refer to [1] to obtain the download link
|
||||
|
||||
2. Use this script to preprocess the data
|
||||
```bash
|
||||
python src/preprocess_data.py --data_path=./data/ --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0
|
||||
```
|
||||
|
||||
### [Generate and Process the Synthetic Data](#content)
|
||||
1. The following command will generate 40 million lines of click data, in the format of
|
||||
> "label\tdense_feature[0]\tdense_feature[1]...\tsparse_feature[0]\tsparse_feature[1]...".
|
||||
```
|
||||
mkdir -p syn_data/origin_data
|
||||
python src/generate_synthetic_data.py --output_file=syn_data/origin_data/train.txt --number_examples=40000000 --dense_dim=13 --slot_dim=51 --vocabulary_size=2000000000 --random_slot_values=0
|
||||
```
|
||||
Arguments:
|
||||
* `--output_file`: The output path of the generated file
|
||||
* `--label_dim` : The label category
|
||||
* `--number_examples`: The row numbers of the generated file
|
||||
* `--dense_dim` : The number of the continue feature.
|
||||
* `--slot_dim`: The number of the category features
|
||||
* `--vocabulary_size`: The vocabulary size of the total dataset
|
||||
* `--random_slot_values`: 0 or 1. If 1, the id is generated by the random. If 0, the id is set by the row_index mod part_size, where
|
||||
part_size is the vocab size for each slot
|
||||
|
||||
Preprocess the generated data
|
||||
2. Preprocess the generated data
|
||||
```
|
||||
python src/preprocess_data.py --data_path=./syn_data/ --data_type=synthetic --dense_dim=13 --slot_dim=51 --threshold=0 --train_line_count=40000000 --skip_id_convert=1
|
||||
python src/preprocess_data.py --data_path=./syn_data/ --dense_dim=13 --slot_dim=51 --threshold=0 --train_line_count=40000000 --skip_id_convert=1
|
||||
```
|
||||
|
||||
## [Training Process](#contents)
|
||||
|
||||
### [SingleDevice](#contents)
|
||||
|
||||
## Running Code
|
||||
|
||||
### Code Structure
|
||||
The entire code structure is as following:
|
||||
```
|
||||
|--- wide_and_deep/
|
||||
train_and_eval.py "Entrance of Wide&Deep model training and evaluation"
|
||||
eval.py "Entrance of Wide&Deep model evaluation"
|
||||
train.py "Entrance of Wide&Deep model training"
|
||||
train_and_eval_multinpu.py "Entrance of Wide&Deep model data parallel training and evaluation"
|
||||
train_and_eval_auto_parallel.py
|
||||
train_and_eval_parameter_server.py "Entrance of Wide&Deep model parameter server training and evaluation"
|
||||
|--- src/ "Entrance of training and evaluation"
|
||||
config.py "Parameters configuration"
|
||||
dataset.py "Dataset loader class"
|
||||
process_data.py "Process dataset"
|
||||
preprocess_data.py "Pre_process dataset"
|
||||
wide_and_deep.py "Model structure"
|
||||
callbacks.py "Callback class for training and evaluation"
|
||||
generate_synthetic_data.py "Generate the synthetic data for benchmark"
|
||||
metrics.py "Metric class"
|
||||
|--- script/ "Run shell dir"
|
||||
run_multinpu_train.sh "Run data parallel"
|
||||
run_auto_parallel_train.sh "Run auto parallel"
|
||||
run_parameter_server_train.sh "Run parameter server"
|
||||
```
|
||||
|
||||
|
||||
### Train and evaluate model
|
||||
To train and evaluate the model, command as follows:
|
||||
```
|
||||
python train_and_eval.py
|
||||
```
|
||||
Arguments:
|
||||
* `--device_target`: Device where the code will be implemented (Default: Ascend).
|
||||
* `--data_path`: This should be set to the same directory given to the data_download's data_dir argument.
|
||||
* `--epochs`: Total train epochs.
|
||||
* `--batch_size`: Training batch size.
|
||||
* `--eval_batch_size`: Eval batch size.
|
||||
* `--field_size`: The number of features.
|
||||
* `--vocab_size`: The total features of dataset.
|
||||
* `--emb_dim`: The dense embedding dimension of sparse feature.
|
||||
* `--deep_layers_dim`: The dimension of all deep layers.
|
||||
* `--deep_layers_act`: The activation of all deep layers.
|
||||
* `--dropout_flag`: Whether do dropout.
|
||||
* `--keep_prob`: The rate to keep in dropout layer.
|
||||
* `--ckpt_path`:The location of the checkpoint file.
|
||||
* `--eval_file_name` : Eval output file.
|
||||
* `--loss_file_name` : Loss output file.
|
||||
* `--dataset_type` : tfrecord/mindrecord/hd5.
|
||||
|
||||
To train the model in one device, command as follows:
|
||||
```
|
||||
python train.py
|
||||
```
|
||||
Arguments:
|
||||
* `--device_target`: Device where the code will be implemented (Default: Ascend).
|
||||
* `--data_path`: This should be set to the same directory given to the data_download's data_dir argument.
|
||||
* `--epochs`: Total train epochs.
|
||||
* `--batch_size`: Training batch size.
|
||||
* `--eval_batch_size`: Eval batch size.
|
||||
* `--field_size`: The number of features.
|
||||
* `--vocab_size`: The total features of dataset.
|
||||
* `--emb_dim`: The dense embedding dimension of sparse feature.
|
||||
* `--deep_layers_dim`: The dimension of all deep layers.
|
||||
* `--deep_layers_act`: The activation of all deep layers.
|
||||
* `--dropout_flag`: Whether do dropout.
|
||||
* `--keep_prob`: The rate to keep in dropout layer.
|
||||
* `--ckpt_path`:The location of the checkpoint file.
|
||||
* `--eval_file_name` : Eval output file.
|
||||
* `--loss_file_name` : Loss output file.
|
||||
* `--dataset_type` : tfrecord/mindrecord/hd5.
|
||||
|
||||
To train the model in distributed, command as follows:
|
||||
### [Distribute Training](#contents)
|
||||
To train the model in data distributed training, command as follows:
|
||||
```
|
||||
# configure environment path before training
|
||||
bash run_multinpu_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE
|
||||
```
|
||||
To train the model in model parallel training, commands as follows:
|
||||
```
|
||||
# configure environment path before training
|
||||
bash run_auto_parallel_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE
|
||||
|
@ -147,7 +260,7 @@ bash deploy_cluster.sh CLUSTER_CONFIG_PATH EXECUTE_PATH
|
|||
bash start_cluster.sh CLUSTER_CONFIG_PATH EPOCH_SIZE VOCAB_SIZE EMB_DIM
|
||||
DATASET ENV_SH RANK_TABLE_FILE MODE
|
||||
```
|
||||
|
||||
### [Parameter Server](#contents)
|
||||
To train and evaluate the model in parameter server mode, command as follows:'''
|
||||
```
|
||||
# SERVER_NUM is the number of parameter servers for this task.
|
||||
|
@ -157,24 +270,56 @@ To train and evaluate the model in parameter server mode, command as follows:'''
|
|||
bash run_parameter_server_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE SERVER_NUM SCHED_HOST SCHED_PORT
|
||||
```
|
||||
|
||||
|
||||
|
||||
## [Evaluation Process](#contents)
|
||||
To evaluate the model, command as follows:
|
||||
```
|
||||
python eval.py
|
||||
```
|
||||
Arguments:
|
||||
* `--device_target`: Device where the code will be implemented (Default: Ascend).
|
||||
* `--data_path`: This should be set to the same directory given to the data_download's data_dir argument.
|
||||
* `--epochs`: Total train epochs.
|
||||
* `--batch_size`: Training batch size.
|
||||
* `--eval_batch_size`: Eval batch size.
|
||||
* `--field_size`: The number of features.
|
||||
* `--vocab_size`: The total features of dataset.
|
||||
* `--emb_dim`: The dense embedding dimension of sparse feature.
|
||||
* `--deep_layers_dim`: The dimension of all deep layers.
|
||||
* `--deep_layers_act`: The activation of all deep layers.
|
||||
* `--keep_prob`: The rate to keep in dropout layer.
|
||||
* `--ckpt_path`:The location of the checkpoint file.
|
||||
* `--eval_file_name` : Eval output file.
|
||||
* `--loss_file_name` : Loss output file.
|
||||
|
||||
There are other arguments about models and training process. Use the `--help` or `-h` flag to get a full list of possible arguments with detailed descriptions.
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Training Performance
|
||||
|
||||
| Parameters | Single <br />Ascend | Single<br />GPU | Data-Parallel-8P | Host-Device-mode-8P |
|
||||
| ------------------------ | ------------------------------- | ------------------------------- | ------------------------------- | ------------------------------- |
|
||||
| Resource | Ascend 910 | Tesla V100-PCIE 32G | Ascend 910 | Ascend 910 |
|
||||
| Uploaded Date | 08/21/2020 (month/day/year) | 08/21/2020 (month/day/year) | 08/21/2020 (month/day/year) | 08/21/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta | master | 0.6.0-beta | 0.6.0-beta |
|
||||
| Dataset | [1] | [1] | [1] | [1] |
|
||||
| Training Parameters | Epoch=15,<br />batch_size=16000 | Epoch=15,<br />batch_size=16000 | Epoch=15,<br />batch_size=16000 | Epoch=15,<br />batch_size=16000 |
|
||||
| Optimizer | FTRL,Adam | FTRL,Adam | FTRL,Adam | FTRL,Adam |
|
||||
| Loss Function | SigmoidCrossEntroy | SigmoidCrossEntroy | SigmoidCrossEntroy | SigmoidCrossEntroy |
|
||||
| AUC Score | 0.80937 | 0.80971 | 0.80862 | 0.80834 |
|
||||
| Speed | 20.906 ms/step | 24.465 ms/step | 27.388 ms/step | 236.506 ms/step |
|
||||
| Loss | wide:0.433,deep:0.444 | wide:0.444, deep:0.456 | wide:0.437, deep: 0.448 | wide:0.444, deep:0.444 |
|
||||
| Parms(M) | 75.84 | 75.84 | 75.84 | 75.84 |
|
||||
| Checkpoint for inference | 233MB(.ckpt file) | 230MB(.ckpt) | 233MB(.ckpt file) | 233MB(.ckpt file) |
|
||||
|
||||
|
||||
|
||||
All executable scripts can be found in [here](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/wide_and_deep/script)
|
||||
|
||||
Note: The result of GPU is tested under the master version. The parameter server mode of the Wide&Deep model is still under development.
|
||||
|
||||
### Evaluation Performance
|
||||
|
||||
| Parameters | Wide&Deep |
|
||||
| ----------------- | --------------------------- |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 08/21/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta |
|
||||
| Dataset | [1] |
|
||||
| Batch Size | 16000 |
|
||||
| Outputs | AUC |
|
||||
| Accuracy | AUC=0.809 |
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
@ -22,25 +22,28 @@ def argparse_init():
|
|||
parser = argparse.ArgumentParser(description='WideDeep')
|
||||
parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
|
||||
help="device where the code will be implemented. (Default: Ascend)")
|
||||
parser.add_argument("--data_path", type=str, default="./test_raw_data/")
|
||||
parser.add_argument("--epochs", type=int, default=15)
|
||||
parser.add_argument("--full_batch", type=bool, default=False)
|
||||
parser.add_argument("--batch_size", type=int, default=16000)
|
||||
parser.add_argument("--eval_batch_size", type=int, default=16000)
|
||||
parser.add_argument("--field_size", type=int, default=39)
|
||||
parser.add_argument("--vocab_size", type=int, default=200000)
|
||||
parser.add_argument("--emb_dim", type=int, default=80)
|
||||
parser.add_argument("--deep_layer_dim", type=int, nargs='+', default=[1024, 512, 256, 128])
|
||||
parser.add_argument("--deep_layer_act", type=str, default='relu')
|
||||
parser.add_argument("--keep_prob", type=float, default=1.0)
|
||||
parser.add_argument("--dropout_flag", type=int, default=0)
|
||||
parser.add_argument("--data_path", type=str, default="./test_raw_data/",
|
||||
help="This should be set to the same directory given to the data_download's data_dir argument")
|
||||
parser.add_argument("--epochs", type=int, default=15, help="Total train epochs")
|
||||
parser.add_argument("--full_batch", type=bool, default=False, help="Enable loading the full batch ")
|
||||
parser.add_argument("--batch_size", type=int, default=16000, help="Training batch size.")
|
||||
parser.add_argument("--eval_batch_size", type=int, default=16000, help="Eval batch size.")
|
||||
parser.add_argument("--field_size", type=int, default=39, help="The number of features.")
|
||||
parser.add_argument("--vocab_size", type=int, default=200000, help="The total features of dataset.")
|
||||
parser.add_argument("--emb_dim", type=int, default=80, help="The dense embedding dimension of sparse feature.")
|
||||
parser.add_argument("--deep_layer_dim", type=int, nargs='+', default=[1024, 512, 256, 128],
|
||||
help="The dimension of all deep layers.")
|
||||
parser.add_argument("--deep_layer_act", type=str, default='relu',
|
||||
help="The activation function of all deep layers.")
|
||||
parser.add_argument("--keep_prob", type=float, default=1.0, help="The keep rate in dropout layer.")
|
||||
parser.add_argument("--dropout_flag", type=int, default=0, help="Enable dropout")
|
||||
parser.add_argument("--output_path", type=str, default="./output/")
|
||||
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/")
|
||||
parser.add_argument("--eval_file_name", type=str, default="eval.log")
|
||||
parser.add_argument("--loss_file_name", type=str, default="loss.log")
|
||||
parser.add_argument("--host_device_mix", type=int, default=0)
|
||||
parser.add_argument("--dataset_type", type=str, default="tfrecord")
|
||||
parser.add_argument("--parameter_server", type=int, default=0)
|
||||
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/", help="The location of the checkpoint file.")
|
||||
parser.add_argument("--eval_file_name", type=str, default="eval.log", help="Eval output file.")
|
||||
parser.add_argument("--loss_file_name", type=str, default="loss.log", help="Loss output file.")
|
||||
parser.add_argument("--host_device_mix", type=int, default=0, help="Enable host device mode or not")
|
||||
parser.add_argument("--dataset_type", type=str, default="tfrecord", help="tfrecord/mindrecord/hd5")
|
||||
parser.add_argument("--parameter_server", type=int, default=0, help="Open parameter server of not")
|
||||
return parser
|
||||
|
||||
|
||||
|
@ -48,6 +51,7 @@ class WideDeepConfig():
|
|||
"""
|
||||
WideDeepConfig
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.device_target = "Ascend"
|
||||
self.data_path = "./test_raw_data/"
|
||||
|
|
Loading…
Reference in New Issue