!5295 Fix some doc errors in pp distributions and bijectors

Merge pull request !5295 from peixu_ren/custom_bijector
This commit is contained in:
mindspore-ci-bot 2020-08-27 08:53:32 +08:00 committed by Gitee
commit 9f13170217
7 changed files with 59 additions and 21 deletions

View File

@ -101,13 +101,13 @@ class Bijector(Cell):
def forward_log_jacobian(self, *args, **kwargs):
"""
Logarithm of the derivative of forward transformation.
Logarithm of the derivative of the forward transformation.
"""
return self._forward_log_jacobian(*args, **kwargs)
def inverse_log_jacobian(self, *args, **kwargs):
"""
Logarithm of the derivative of forward transformation.
Logarithm of the derivative of the inverse transformation.
"""
return self._inverse_log_jacobian(*args, **kwargs)
@ -131,11 +131,14 @@ class Bijector(Cell):
"""
Override construct in Cell.
Args:
*inputs: inputs[0] is always the name of a function.
Note:
Names of supported functions include:
'forward', 'inverse', 'forward_log_jacobian', 'inverse_log_jacobian'.
Notes:
Always raise RuntimeError as Distribution should not be called directly.
Args:
name (str): name of the function.
*args (list): list of positional arguments needed for the function.
**kwargs (dictionary): dictionary of keyword arguments needed for the function.
"""
if name == 'forward':
return self.forward(*args, **kwargs)

View File

@ -20,6 +20,9 @@ class Exp(PowerTransform):
Exponential Bijector.
This Bijector performs the operation: Y = exp(x).
Args:
name (str): name of the bijector. Default: 'Exp'.
Examples:
>>> # To initialize a Exp bijector
>>> import mindspore.nn.probability.bijector as msb
@ -32,11 +35,12 @@ class Exp(PowerTransform):
>>> self.e1 = msb.Exp()
>>>
>>> def construct(self, value):
>>>
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'forward' with the name of the function
>>> ans1 = self.e1.forward(value)
>>> ans2 = self.e1.backward(value)
>>> ans1 = self.s1.forward(value)
>>> ans2 = self.s1.inverse(value)
>>> ans3 = self.s1.forward_log_jacobian(value)
>>> ans4 = self.s1.inverse_log_jacobian(value)
"""
def __init__(self,
name='Exp'):

View File

@ -29,8 +29,12 @@ class PowerTransform(Bijector):
This bijector is equivalent to the `Exp` bijector when `c=0`
Raises:
ValueError: If the power is less than 0 or is not known statically.
Args:
power (int or float): scale factor. Default: 0.
name (str): name of the bijector. Default: 'PowerTransform'.
Examples:
>>> # To initialize a PowerTransform bijector of power 0.5
@ -44,10 +48,12 @@ class PowerTransform(Bijector):
>>> self.p1 = msb.PowerTransform(0.5)
>>>
>>> def construct(self, value):
>>>
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'forward' with the name of the function
>>> ans = self.p1.forward(, value)
>>> ans1 = self.s1.forward(value)
>>> ans2 = self.s1.inverse(value)
>>> ans3 = self.s1.forward_log_jacobian(value)
>>> ans4 = self.s1.inverse_log_jacobian(value)
"""
def __init__(self,

View File

@ -29,6 +29,7 @@ class ScalarAffine(Bijector):
Args:
scale (float): scale factor. Default: 1.0.
shift (float): shift factor. Default: 0.0.
name (str): name of the bijector. Default: 'ScalarAffine'.
Examples:
>>> # To initialize a ScalarAffine bijector of scale 1 and shift 2
@ -43,10 +44,10 @@ class ScalarAffine(Bijector):
>>> def construct(self, value):
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'forward' with the name of the function
>>> ans = self.s1.forward(value)
>>> ans = self.s1.inverse(value)
>>> ans = self.s1.forward_log_jacobian(value)
>>> ans = self.s1.inverse_log_jacobian(value)
>>> ans1 = self.s1.forward(value)
>>> ans2 = self.s1.inverse(value)
>>> ans3 = self.s1.forward_log_jacobian(value)
>>> ans4 = self.s1.inverse_log_jacobian(value)
"""
def __init__(self,

View File

@ -33,6 +33,7 @@ class Softplus(Bijector):
Args:
sharpness (float): scale factor. Default: 1.0.
name (str): name of the bijector. Default: 'Softplus'.
Examples:
>>> # To initialize a Softplus bijector of sharpness 2
@ -47,10 +48,10 @@ class Softplus(Bijector):
>>> def construct(self, value):
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'forward' with the name of the function
>>> ans = self.sp1.forward(value)
>>> ans = self.sp1.inverse(value)
>>> ans = self.sp1.forward_log_jacobian(value)
>>> ans = self.sp1.inverse_log_jacobian(value)
>>> ans1 = self.sp1.forward(value)
>>> ans2 = self.sp1.inverse(value)
>>> ans3 = self.sp1.forward_log_jacobian(value)
>>> ans4 = self.sp1.inverse_log_jacobian(value)
"""
def __init__(self,

View File

@ -454,13 +454,14 @@ class Distribution(Cell):
Override construct in Cell.
Note:
Names of supported functions:
Names of supported functions include:
'prob', 'log_prob', 'cdf', 'log_cdf', 'survival_function', 'log_survival'
'var', 'sd', 'entropy', 'kl_loss', 'cross_entropy', 'sample'.
Args:
name (str): name of the function.
*args (list): list of arguments needed for the function.
*args (list): list of positional arguments needed for the function.
**kwargs (dictionary): dictionary of keyword arguments needed for the function.
"""
if name == 'log_prob':

View File

@ -35,6 +35,28 @@ class TransformedDistribution(Distribution):
The arguments used to initialize the original distribution cannot be None.
For example, mynormal = nn.Normal(dtype=dtyple.float32) cannot be used to initialized a
TransformedDistribution since mean and sd are not specified.
Examples:
>>> # To initialize a transformed distribution, e.g. lognormal distribution,
>>> # using Normal distribution as the base distribution, and Exp bijector as the bijector function.
>>> import mindspore.nn.probability.distribution as msd
>>> import mindspore.nn.probability.bijector as msb
>>> ln = msd.TransformedDistribution(msb.Exp(),
>>> msd.Normal(0.0, 1.0, dtype=mstype.float32),
>>> dtype=mstype.float32)
>>>
>>> # To use a transformed distribution in a network
>>> class net(Cell):
>>> def __init__(self):
>>> super(net, self).__init__():
>>> self.ln = msd.TransformedDistribution(msb.Exp(),
>>> msd.Normal(0.0, 1.0, dtype=mstype.float32),
>>> dtype=mstype.float32)
>>>
>>> def construct(self, value):
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'sample' with the name of the function
>>> ans = self.ln.sample(shape=(2, 3))
"""
def __init__(self,
bijector,