!5678 improve performance for yolov3_darknet53 and update the performance data to readme
Merge pull request !5678 from hanhuifeng/yolov3_gpu_mod
This commit is contained in:
commit
8896b88f27
|
@ -302,38 +302,38 @@ The above python command will run in the background. You can view the results th
|
|||
|
||||
### Evaluation Performance
|
||||
|
||||
| Parameters | YOLO |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | YOLOv3 |
|
||||
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G |
|
||||
| uploaded Date | 06/31/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-alpha |
|
||||
| Dataset | COCO2014 |
|
||||
| Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Sigmoid Cross Entropy with logits |
|
||||
| outputs | boxes and label |
|
||||
| Loss | 34 |
|
||||
| Speed | 1pc: 350 ms/step; |
|
||||
| Total time | 8pc: 25 hours |
|
||||
| Parameters (M) | 62.1 |
|
||||
| Checkpoint for Fine tuning | 474M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 |
|
||||
| Parameters | YOLO |YOLO |
|
||||
| -------------------------- | ----------------------------------------------------------- |----------------------------------------------------------- |
|
||||
| Model Version | YOLOv3 |YOLOv3 |
|
||||
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | NV SMX2 V100-16G; CPU 2.10GHz, 96cores; Memory, 251G |
|
||||
| uploaded Date | 06/31/2020 (month/day/year) | 09/02/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-alpha | 0.7.0 |
|
||||
| Dataset | COCO2014 | COCO2014 |
|
||||
| Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 | epoch=320, batch_size=32, lr=0.001, momentum=0.9 |
|
||||
| Optimizer | Momentum | Momentum |
|
||||
| Loss Function | Sigmoid Cross Entropy with logits | Sigmoid Cross Entropy with logits |
|
||||
| outputs | boxes and label | boxes and label |
|
||||
| Loss | 34 | 34 |
|
||||
| Speed | 1pc: 350 ms/step; | 1pc: 600 ms/step; |
|
||||
| Total time | 8pc: 25 hours | 8pc: 18 hours(shape=416) |
|
||||
| Parameters (M) | 62.1 | 62.1 |
|
||||
| Checkpoint for Fine tuning | 474M (.ckpt file) | 474M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53 |
|
||||
|
||||
|
||||
### Inference Performance
|
||||
|
||||
| Parameters | YOLO |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | YOLOv3 |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 06/31/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-alpha |
|
||||
| Dataset | COCO2014, 40,504 images |
|
||||
| batch_size | 1 |
|
||||
| outputs | mAP |
|
||||
| Accuracy | 8pcs: 31.1% |
|
||||
| Model for inference | 474M (.ckpt file) |
|
||||
| Parameters | YOLO |YOLO |
|
||||
| ------------------- | --------------------------- |------------------------------|
|
||||
| Model Version | YOLOv3 | YOLOv3 |
|
||||
| Resource | Ascend 910 | NV SMX2 V100-16G |
|
||||
| Uploaded Date | 06/31/2020 (month/day/year) | 08/20/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-alpha | 0.7.0 |
|
||||
| Dataset | COCO2014, 40,504 images | COCO2014, 40,504 images |
|
||||
| batch_size | 1 | 1 |
|
||||
| outputs | mAP | mAP |
|
||||
| Accuracy | 8pcs: 31.1% | 8pcs: 29.7%~30.3% (shape=416)|
|
||||
| Model for inference | 474M (.ckpt file) | 474M (.ckpt file) |
|
||||
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
|
|
@ -304,14 +304,14 @@ def train():
|
|||
input_shape = images.shape[2:4]
|
||||
args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
|
||||
|
||||
images = Tensor(images)
|
||||
images = Tensor.from_numpy(images)
|
||||
|
||||
batch_y_true_0 = Tensor(data['bbox1'])
|
||||
batch_y_true_1 = Tensor(data['bbox2'])
|
||||
batch_y_true_2 = Tensor(data['bbox3'])
|
||||
batch_gt_box0 = Tensor(data['gt_box1'])
|
||||
batch_gt_box1 = Tensor(data['gt_box2'])
|
||||
batch_gt_box2 = Tensor(data['gt_box3'])
|
||||
batch_y_true_0 = Tensor.from_numpy(data['bbox1'])
|
||||
batch_y_true_1 = Tensor.from_numpy(data['bbox2'])
|
||||
batch_y_true_2 = Tensor.from_numpy(data['bbox3'])
|
||||
batch_gt_box0 = Tensor.from_numpy(data['gt_box1'])
|
||||
batch_gt_box1 = Tensor.from_numpy(data['gt_box2'])
|
||||
batch_gt_box2 = Tensor.from_numpy(data['gt_box3'])
|
||||
|
||||
input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
|
||||
loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
|
||||
|
|
Loading…
Reference in New Issue