!5012 modify readme for GAT

Merge pull request !5012 from zhanke/gat_readme
This commit is contained in:
mindspore-ci-bot 2020-08-25 15:59:27 +08:00 committed by Gitee
commit 5c9348ab17
4 changed files with 153 additions and 113 deletions

View File

@ -3,100 +3,116 @@
- [Graph Attention Networks Description](#graph-attention-networks-description)
- [Model architecture](#model-architecture)
- [Dataset](#dataset)
- [Data Preparation](#data-preparation)
- [Features](#features)
- [Mixed Precision](#mixed-precision)
- [Environment Requirements](#environment-requirements)
- [Structure](#structure)
- [Parameter configuration](#parameter-configuration)
- [Running the example](#running-the-example)
- [Usage](#usage)
- [Result](#result)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [Inference Performance](#evaluation-performance)
- [Description of random situation](#description-of-random-situation)
- [Others](#others)
- [ModelZoo Homepage](#modelzoo-homepage)
<!--TOC -->
# Graph Attention Networks Description
# [Graph Attention Networks Description](#contents)
Graph Attention Networks(GAT) was proposed in 2017 by Petar Veličković et al. By leveraging masked self-attentional layers to address shortcomings of prior graph based method, GAT achieved or matched state of the art performance on both transductive datasets like Cora and inductive dataset like PPI. This is an example of training GAT with Cora dataset in MindSpore.
[Paper](https://arxiv.org/abs/1710.10903): Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
# Model architecture
An illustration of multi- head attention (with K = 3 heads) by node 1 on its neighborhood can be found below:
![](https://camo.githubusercontent.com/4fe1a90e67d17a2330d7cfcddc930d5f7501750c/68747470733a2f2f7777772e64726f70626f782e636f6d2f732f71327a703170366b37396a6a6431352f6761745f6c617965722e706e673f7261773d31)
# [Model architecture](#contents)
Note that according to whether this attention layer is the output layer of the network or not, the node update function can be concatenate or average.
# Dataset
Statistics of dataset used are summerized as below:
# [Dataset](#contents)
- Dataset size:
Statistics of dataset used are summerized as below:
| | Cora | Citeseer |
| ------------------ | -------------: | -------------: |
| Task | Transductive | Transductive |
| # Nodes | 2708 (1 graph) | 3327 (1 graph) |
| # Edges | 5429 | 4732 |
| # Features/Node | 1433 | 3703 |
| # Classes | 7 | 6 |
| # Training Nodes | 140 | 120 |
| # Validation Nodes | 500 | 500 |
| # Test Nodes | 1000 | 1000 |
| | Cora | Citeseer |
| ------------------ | -------------: | -------------: |
| Task | Transductive | Transductive |
| # Nodes | 2708 (1 graph) | 3327 (1 graph) |
| # Edges | 5429 | 4732 |
| # Features/Node | 1433 | 3703 |
| # Classes | 7 | 6 |
| # Training Nodes | 140 | 120 |
| # Validation Nodes | 500 | 500 |
| # Test Nodes | 1000 | 1000 |
## Data Preparation
Download the dataset Cora or Citeseer provided by /kimiyoung/planetoid from github.
- Data Preparation
> Place the dataset to any path you want, the folder should include files as follows(we use Cora dataset as an example):
> Place the dataset to any path you want, the folder should include files as follows(we use Cora dataset as an example):
```
.
└─data
├─ind.cora.allx
├─ind.cora.ally
├─ind.cora.graph
├─ind.cora.test.index
├─ind.cora.tx
├─ind.cora.ty
├─ind.cora.x
└─ind.cora.y
```
```
.
└─data
├─ind.cora.allx
├─ind.cora.ally
├─ind.cora.graph
├─ind.cora.test.index
├─ind.cora.tx
├─ind.cora.ty
├─ind.cora.x
└─ind.cora.y
```
> Generate dataset in mindrecord format for cora or citeseer.
>> Usage
```buildoutcfg
cd ./scripts
# SRC_PATH is the dataset file path you downloaded, DATASET_NAME is cora or citeseer
sh run_process_data.sh [SRC_PATH] [DATASET_NAME]
```
> Generate dataset in mindrecord format for cora or citeseer.
>> Usage
```buildoutcfg
cd ./scripts
# SRC_PATH is the dataset file path you downloaded, DATASET_NAME is cora or citeseer
sh run_process_data_ascend.sh [SRC_PATH] [DATASET_NAME]
```
>> Launch
```
#Generate dataset in mindrecord format for cora
./run_process_data.sh ./data cora
#Generate dataset in mindrecord format for citeseer
./run_process_data.sh ./data citeseer
```
>> Launch
```
#Generate dataset in mindrecord format for cora
./run_process_data_ascend.sh ./data cora
#Generate dataset in mindrecord format for citeseer
./run_process_data_ascend.sh ./data citeseer
```
# Features
# [Features](#contents)
## Mixed Precision
To ultilize the strong computation power of Ascend chip, and accelerate the training process, the mixed training method is used. MindSpore is able to cope with FP32 inputs and FP16 operators. In GAT example, the model is set to FP16 mode except for the loss calculation part.
# Environment Requirements
# [Environment Requirements](#contents)
- Hardward (Ascend)
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# Structure
# [Quick Start](#contents)
After installing MindSpore via the official website and Dataset is correctly generated, you can start training and evaluation as follows.
- running on Ascend
```
# run training example with cora dataset, DATASET_NAME is cora
sh run_train_ascend.sh [DATASET_NAME]
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```shell
.
└─gat
├─README.md
├─scripts
| ├─run_process_data.sh # Generate dataset in mindrecord format
| └─run_train.sh # Launch training
| ├─run_process_data_ascend.sh # Generate dataset in mindrecord format
| └─run_train_ascend.sh # Launch training
|
├─src
| ├─config.py # Training configurations
@ -107,60 +123,73 @@ To ultilize the strong computation power of Ascend chip, and accelerate the trai
└─train.py # Train net
```
## Parameter configuration
## [Script Parameters](#contents)
Parameters for training can be set in config.py.
```
"learning_rate": 0.005, # Learning rate
"num_epochs": 200, # Epoch sizes for training
"hid_units": [8], # Hidden units for attention head at each layer
"n_heads": [8, 1], # Num heads for each layer
"early_stopping": 100, # Early stop patience
"l2_coeff": 0.0005 # l2 coefficient
"attn_dropout": 0.6 # Attention dropout ratio
"feature_dropout":0.6 # Feature dropout ratio
```
Parameters for both training and evaluation can be set in config.py.
# Running the example
## Usage
After Dataset is correctly generated.
```
# run train with cora dataset, DATASET_NAME is cora
sh run_train.sh [DATASET_NAME]
```
- config for GAT, CORA dataset
## Result
Training result will be stored in the scripts path, whose folder name begins with "train". You can find the result like the followings in log.
```python
"learning_rate": 0.005, # Learning rate
"num_epochs": 200, # Epoch sizes for training
"hid_units": [8], # Hidden units for attention head at each layer
"n_heads": [8, 1], # Num heads for each layer
"early_stopping": 100, # Early stop patience
"l2_coeff": 0.0005 # l2 coefficient
"attn_dropout": 0.6 # Attention dropout ratio
"feature_dropout":0.6 # Feature dropout ratio
```
```
Epoch:0, train loss=1.98498 train acc=0.17143 | val loss=1.97946 val acc=0.27200
Epoch:1, train loss=1.98345 train acc=0.15000 | val loss=1.97233 val acc=0.32600
Epoch:2, train loss=1.96968 train acc=0.21429 | val loss=1.96747 val acc=0.37400
Epoch:3, train loss=1.97061 train acc=0.20714 | val loss=1.96410 val acc=0.47600
Epoch:4, train loss=1.96864 train acc=0.13571 | val loss=1.96066 val acc=0.59600
...
Epoch:195, train loss=1.45111 train_acc=0.56429 | val_loss=1.44325 val_acc=0.81200
Epoch:196, train loss=1.52476 train_acc=0.52143 | val_loss=1.43871 val_acc=0.81200
Epoch:197, train loss=1.35807 train_acc=0.62857 | val_loss=1.43364 val_acc=0.81400
Epoch:198, train loss=1.47566 train_acc=0.51429 | val_loss=1.42948 val_acc=0.81000
Epoch:199, train loss=1.56411 train_acc=0.55000 | val_loss=1.42632 val_acc=0.80600
Test loss=1.5366285, test acc=0.84199995
...
```
## [Training Process](#contents)
Results on Cora dataset is shown by table below:
### Training
| | MindSpore + Ascend910 | Tensorflow + V100 |
| ------------------------------------ | --------------------: | ----------------: |
| Accuracy | 0.830933271 | 0.828649968 |
| Training Cost(200 epochs) | 27.62298311s | 36.711862s |
| End to End Training Cost(200 epochs) | 39.074s | 50.894s |
- running on Ascend
```python
sh run_train_ascend.sh [DATASET_NAME]
```
Training result will be stored in the scripts path, whose folder name begins with "train". You can find the result like the
followings in log.
```python
Epoch:0, train loss=1.98498 train acc=0.17143 | val loss=1.97946 val acc=0.27200
Epoch:1, train loss=1.98345 train acc=0.15000 | val loss=1.97233 val acc=0.32600
Epoch:2, train loss=1.96968 train acc=0.21429 | val loss=1.96747 val acc=0.37400
Epoch:3, train loss=1.97061 train acc=0.20714 | val loss=1.96410 val acc=0.47600
Epoch:4, train loss=1.96864 train acc=0.13571 | val loss=1.96066 val acc=0.59600
...
Epoch:195, train loss=1.45111 train_acc=0.56429 | val_loss=1.44325 val_acc=0.81200
Epoch:196, train loss=1.52476 train_acc=0.52143 | val_loss=1.43871 val_acc=0.81200
Epoch:197, train loss=1.35807 train_acc=0.62857 | val_loss=1.43364 val_acc=0.81400
Epoch:198, train loss=1.47566 train_acc=0.51429 | val_loss=1.42948 val_acc=0.81000
Epoch:199, train loss=1.56411 train_acc=0.55000 | val_loss=1.42632 val_acc=0.80600
Test loss=1.5366285, test acc=0.84199995
...
```
# [Model Description](#contents)
## [Performance](#contents)
| Parameter | GAT |
| ------------------------------------ | ----------------------------------------- |
| Resource | Ascend 910 |
| uploaded Date | 06/16/2020(month/day/year) |
| MindSpore Version | 0.5.0-beta |
| Dataset | Cora/Citeseer |
| Training Parameter | epoch=200 |
| Optimizer | Adam |
| Loss Function | Softmax Cross Entropy |
| Accuracy | 83.0/72.5 |
| Speed | 0.195s/epoch |
| Total time | 39s |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/gnn/gat |
# [Description of random situation](#contents)
# Description of random situation
GAT model contains lots of dropout operations, if you want to disable dropout, set the attn_dropout and feature_dropout to 0 in src/config.py. Note that this operation will cause the accuracy drop to approximately 80%.
# Others
GAT model is verified on Ascend environment, not on CPU or GPU.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](http://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -16,7 +16,7 @@
if [ $# != 2 ]
then
echo "Usage: sh run_train.sh [SRC_PATH] [DATASET_NAME]"
echo "Usage: sh run_train_ascend.sh [SRC_PATH] [DATASET_NAME]"
exit 1
fi
@ -42,7 +42,7 @@ MINDRECORD_PATH=`pwd`/data_mr
rm -f $MINDRECORD_PATH/*
cd ../../utils/graph_to_mindrecord || exit
cd ../../../../utils/graph_to_mindrecord || exit
python writer.py --mindrecord_script $DATASET_NAME \
--mindrecord_file "$MINDRECORD_PATH/$DATASET_NAME" \

View File

@ -16,7 +16,7 @@
if [ $# != 1 ]
then
echo "Usage: sh run_train.sh [DATASET_NAME]"
echo "Usage: sh run_train_ascend.sh [DATASET_NAME]"
exit 1
fi

View File

@ -12,7 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Preprocess data obtained for training"""
"""
Preprocess data obtained for training
Cora and Citeseer datasets are supported by our example, the original versions of these datasets are as follows:
@inproceedings{nr,
title={The Network Data Repository with Interactive Graph Analytics and Visualization},
author={Ryan A. Rossi and Nesreen K. Ahmed},
booktitle={AAAI},
url={http://networkrepository.com},
year={2015}
}
In this example, we use dataset splits provided by https://github.com/kimiyoung/planetoid (Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov, [Revisiting Semi-Supervised Learning with Graph Embeddings](https://arxiv.org/abs/1603.08861), ICML 2016).
"""
import numpy as np
import mindspore.dataset as ds