!3119 Delete parameter block_reader for MindDataset

Merge pull request !3119 from dengyutao/remove_blockreader
This commit is contained in:
mindspore-ci-bot 2020-07-31 15:46:15 +08:00 committed by Gitee
commit 4e2b1eec5d
12 changed files with 45 additions and 412 deletions

View File

@ -672,8 +672,6 @@ Status DEPipeline::ParseMindRecordOp(const py::dict &args, std::shared_ptr<Datas
if (!value.is_none()) {
if (key == "num_parallel_workers") {
(void)builder->SetNumMindRecordWorkers(ToInt(value));
} else if (key == "block_reader" && ToBool(value) == true) {
(void)builder->SetBlockReader();
} else if (key == "sampler") {
int num_padded = 0;
if (!args["num_padded"].is_none()) {

View File

@ -51,7 +51,6 @@ MindRecordOp::Builder::Builder() : build_dataset_file_({}) {
build_num_mind_record_workers_ = kDefaultMindRecordWorkers;
build_rows_per_buffer_ = cfg->rows_per_buffer();
build_op_connector_queue_size_ = cfg->op_connector_size();
build_block_reader_ = false;
builder_num_workers_ = 0;
build_num_padded_ = 0;
build_sample_ = nullptr;
@ -69,10 +68,10 @@ Status MindRecordOp::Builder::Build(std::shared_ptr<MindRecordOp> *ptr) {
if (build_num_padded_ > 0) {
sample_json = ToJson(build_sample_);
}
new_mind_record_op = std::make_shared<MindRecordOp>(
build_num_mind_record_workers_, build_rows_per_buffer_, build_dataset_file_, build_load_dataset_,
build_op_connector_queue_size_, build_columns_to_load_, build_operators_, build_block_reader_, build_num_padded_,
sample_json, build_sample_bytes_);
new_mind_record_op =
std::make_shared<MindRecordOp>(build_num_mind_record_workers_, build_rows_per_buffer_, build_dataset_file_,
build_load_dataset_, build_op_connector_queue_size_, build_columns_to_load_,
build_operators_, build_num_padded_, sample_json, build_sample_bytes_);
RETURN_IF_NOT_OK(new_mind_record_op->Init());
*ptr = std::move(new_mind_record_op);
@ -113,9 +112,8 @@ mindrecord::json MindRecordOp::Builder::ToJson(const py::handle &obj) {
MindRecordOp::MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buffer,
std::vector<std::string> dataset_file, bool load_dataset, int32_t op_connector_queue_size,
const std::vector<std::string> &columns_to_load,
const std::vector<std::shared_ptr<ShardOperator>> &operators, const bool &block_reader,
int64_t num_padded, const mindrecord::json &sample_json,
const std::map<std::string, std::string> &sample_bytes)
const std::vector<std::shared_ptr<ShardOperator>> &operators, int64_t num_padded,
const mindrecord::json &sample_json, const std::map<std::string, std::string> &sample_bytes)
: ParallelOp(num_mind_record_workers, op_connector_queue_size),
rows_per_buffer_(rows_per_buffer),
dataset_file_(dataset_file),
@ -123,27 +121,21 @@ MindRecordOp::MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buf
columns_to_load_(columns_to_load),
operators_(operators),
num_mind_record_workers_(num_mind_record_workers),
block_reader_(block_reader),
num_rows_(0),
buffers_needed_(0),
buf_cnt_(0),
ended_worker_(0),
buffer_water_mark_(0),
num_padded_(num_padded),
sample_json_(sample_json),
sample_bytes_(sample_bytes) {
io_blk_queues_.Init(num_workers_, op_connector_queue_size);
if (!block_reader_) return;
for (int32_t i = 0; i < num_workers_; ++i) {
block_buffer_.emplace_back(std::make_unique<std::vector<ShardTuple>>(std::vector<ShardTuple>{}));
}
}
// Private helper method to encapsulate some common construction/reset tasks
Status MindRecordOp::Init() {
shard_reader_ = std::make_unique<ShardReader>();
auto rc = shard_reader_->Open(dataset_file_, load_dataset_, num_mind_record_workers_, columns_to_load_, operators_,
block_reader_, num_padded_);
num_padded_);
CHECK_FAIL_RETURN_UNEXPECTED(rc == MSRStatus::SUCCESS,
"MindRecordOp init failed. Error message: " + ErrnoToMessage(rc));
@ -264,23 +256,6 @@ Status MindRecordOp::WorkerEntry(int32_t worker_id) {
}
RETURN_IF_NOT_OK(GetBufferFromReader(&fetched_buffer, buffer_id, worker_id));
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(fetched_buffer)));
if (!block_reader_) {
RETURN_IF_NOT_OK(io_blk_queues_[worker_id]->PopFront(&io_block));
continue;
}
// update block-reader buffer
block_buffer_[buffer_id % num_workers_]->clear();
{
std::unique_lock<std::mutex> lck(mtx_block_reader_);
if (buffer_id == buffer_water_mark_) {
buffer_water_mark_++;
while (block_set_.count(buffer_water_mark_) > 0) (void)block_set_.erase(buffer_water_mark_++);
} else {
(void)block_set_.insert(buffer_id);
}
}
cv_reader_.notify_one();
RETURN_IF_NOT_OK(io_blk_queues_[worker_id]->PopFront(&io_block));
}
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker");
@ -291,23 +266,16 @@ Status MindRecordOp::GetBufferFromReader(std::unique_ptr<DataBuffer> *fetched_bu
*fetched_buffer = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
std::unique_ptr<TensorQTable> tensor_table = std::make_unique<TensorQTable>();
for (int32_t i = 0; i < rows_per_buffer_; ++i) {
ShardTuple tupled_buffer;
mindrecord::TaskType task_type = mindrecord::TaskType::kCommonTask;
if (block_reader_) {
if (i >= block_buffer_[buffer_id % num_workers_]->size()) break;
tupled_buffer = block_buffer_[buffer_id % num_workers_]->at(i);
} else {
int32_t row_id = buffer_id * rows_per_buffer_ + i;
auto rc = shard_reader_->GetNextById(row_id, worker_id);
task_type = rc.first;
tupled_buffer = rc.second;
auto task_type = rc.first;
auto tupled_buffer = rc.second;
if (task_type == mindrecord::TaskType::kPaddedTask) {
TensorRow tensor_row;
RETURN_IF_NOT_OK(LoadTensorRow(&tensor_row, {}, mindrecord::json(), task_type));
tensor_table->push_back(std::move(tensor_row));
}
if (tupled_buffer.empty()) break;
}
if (task_type == mindrecord::TaskType::kCommonTask) {
for (const auto &tupled_row : tupled_buffer) {
std::vector<uint8_t> columns_blob = std::get<0>(tupled_row);
@ -396,21 +364,6 @@ Status MindRecordOp::LoadTensorRow(TensorRow *tensor_row, const std::vector<uint
return Status::OK();
}
Status MindRecordOp::FetchBlockBuffer(const int32_t &buffer_id) {
{
std::unique_lock<std::mutex> lck(mtx_block_reader_);
cv_reader_.wait(lck, [buffer_id, this] { return buffer_id < buffer_water_mark_ + num_workers_; });
}
for (int32_t i = 0; i < rows_per_buffer_; i++) {
// Block reader does NOT care about argument
auto rc = shard_reader_->GetNextById(i, i);
ShardTuple tuple_buffer = rc.second;
if (tuple_buffer.empty()) break;
block_buffer_[buffer_id % num_workers_]->push_back(std::move(tuple_buffer));
}
return Status::OK();
}
// Class functor operator () override.
// All dataset ops operate by launching a thread (see ExecutionTree). This class functor will
// provide the master loop that drives the logic for performing the work
@ -423,7 +376,6 @@ Status MindRecordOp::operator()() {
while (true) { // each iterator is 1 epoch
for (int32_t i = 0; i < buffers_needed_; ++i) {
if (block_reader_) RETURN_IF_NOT_OK(FetchBlockBuffer(i));
std::vector<int64_t> keys(1, i);
RETURN_IF_NOT_OK(io_blk_queues_[buf_cnt_++ % num_workers_]->Add(
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
@ -455,12 +407,7 @@ Status MindRecordOp::operator()() {
Status MindRecordOp::Reset() {
RETURN_IF_NOT_OK(ParallelOp::Reset()); // Call our super class reset first.
if (block_reader_) {
shard_reader_->Reset();
buffer_water_mark_ = 0;
} else {
shard_reader_->ShuffleTask();
}
shard_reader_wait_post_.Set();
return Status::OK();
@ -473,7 +420,7 @@ Status MindRecordOp::LaunchThreadAndInitOp() {
RETURN_IF_NOT_OK(io_blk_queues_.Register(tree_->AllTasks()));
RETURN_IF_NOT_OK(shard_reader_wait_post_.Register(tree_->AllTasks()));
if (shard_reader_->Launch(!block_reader_) == MSRStatus::FAILED) {
if (shard_reader_->Launch(true) == MSRStatus::FAILED) {
RETURN_STATUS_UNEXPECTED("MindRecordOp launch failed.");
}
// Launch main workers that load DataBuffers by reading all images

View File

@ -94,11 +94,6 @@ class MindRecordOp : public ParallelOp {
return *this;
}
Builder &SetBlockReader() {
build_block_reader_ = true;
return *this;
}
Builder &SetLoadDataset(bool load_dataset) {
build_load_dataset_ = load_dataset;
return *this;
@ -132,7 +127,6 @@ class MindRecordOp : public ParallelOp {
bool build_load_dataset_;
std::vector<std::string> build_columns_to_load_;
std::vector<std::shared_ptr<ShardOperator>> build_operators_;
bool build_block_reader_;
int64_t build_num_padded_;
py::handle build_sample_;
std::map<std::string, std::string> build_sample_bytes_;
@ -148,9 +142,8 @@ class MindRecordOp : public ParallelOp {
// @param operators - ShardOperators for Shuffle, Category, Sample
MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buffer, std::vector<std::string> dataset_file,
bool load_dataset, int32_t op_connector_queue_size, const std::vector<std::string> &columns_to_load,
const std::vector<std::shared_ptr<ShardOperator>> &operators, const bool &block_reader,
int64_t num_padded_, const mindrecord::json &sample_json,
const std::map<std::string, std::string> &sample_bytes_);
const std::vector<std::shared_ptr<ShardOperator>> &operators, int64_t num_padded_,
const mindrecord::json &sample_json, const std::map<std::string, std::string> &sample_bytes_);
// Destructor
~MindRecordOp() override;
@ -206,8 +199,6 @@ class MindRecordOp : public ParallelOp {
// Getter method
std::vector<std::string> columns_to_load() const { return columns_to_load_; }
bool block_reader() const { return block_reader_; }
bool load_dataset() const { return load_dataset_; }
Status Init();
@ -232,8 +223,6 @@ class MindRecordOp : public ParallelOp {
Status LoadTensorRow(TensorRow *tensor_row, const std::vector<uint8_t> &columns_blob,
const mindrecord::json &columns_json, const mindrecord::TaskType task_type);
Status FetchBlockBuffer(const int32_t &buffer_id);
// Private function for computing the assignment of the column name map.
// @return - Status
Status ComputeColMap() override;
@ -244,12 +233,10 @@ class MindRecordOp : public ParallelOp {
std::vector<std::string> columns_to_load_; // Columns to load from dataset
std::vector<std::shared_ptr<ShardOperator>> operators_; // ShardOperators to use
int32_t num_mind_record_workers_; // number of workers to be spawned by ShardReader
bool block_reader_; // block reader switch
int32_t buffers_needed_; // Counter for the buffers that were fetched
int64_t buf_cnt_; // Buffer counter
int32_t num_rows_; // One more than the last row id in the range for this cache
std::atomic<int32_t> ended_worker_;
std::atomic<int32_t> buffer_water_mark_;
int64_t num_padded_;
mindrecord::json sample_json_;
@ -263,12 +250,6 @@ class MindRecordOp : public ParallelOp {
WaitPost shard_reader_wait_post_;
QueueList<std::unique_ptr<IOBlock>> io_blk_queues_;
// For block reader
std::mutex mtx_block_reader_;
std::condition_variable cv_reader_;
std::vector<std::unique_ptr<std::vector<ShardTuple>>> block_buffer_;
std::unordered_set<int32_t> block_set_;
std::mutex ended_worker_mutex_;
};
} // namespace dataset

View File

@ -63,7 +63,6 @@ using ROW_GROUP_BRIEF =
using TASK_RETURN_CONTENT =
std::pair<MSRStatus, std::pair<TaskType, std::vector<std::tuple<std::vector<uint8_t>, json>>>>;
const int kNumBatchInMap = 1000; // iterator buffer size in row-reader mode
const int kNumPageInBuffer = 16; // page buffer size in block-reader mode
class ShardReader {
public:
@ -77,12 +76,10 @@ class ShardReader {
/// \param[in] n_consumer number of threads when reading
/// \param[in] selected_columns column list to be populated
/// \param[in] operators operators applied to data, operator type is shuffle, sample or category
/// \param[in] block_reader block-reader mode if true, otherwise row-reader mode
/// \return MSRStatus the status of MSRStatus
MSRStatus Open(const std::vector<std::string> &file_paths, bool load_dataset, int n_consumer = 4,
const std::vector<std::string> &selected_columns = {},
const std::vector<std::shared_ptr<ShardOperator>> &operators = {}, const bool &block_reader = false,
const int num_padded = 0);
const std::vector<std::shared_ptr<ShardOperator>> &operators = {}, const int num_padded = 0);
/// \brief open files and initialize reader, python API
/// \param[in] file_paths the path of ONE file, any file in dataset is fine or file list
@ -189,10 +186,6 @@ class ShardReader {
std::pair<TaskType, std::vector<std::tuple<std::vector<uint8_t>, json>>> GetNextById(const int64_t &task_id,
const int32_t &consumer_id);
/// \brief return a batch in block-reader mode, given that one is ready
/// \return a batch of images and image data
std::vector<std::tuple<std::vector<uint8_t>, json>> GetBlockNext();
/// \brief return a batch, given that one is ready, python API
/// \return a batch of images and image data
std::vector<std::tuple<std::vector<std::vector<uint8_t>>, pybind11::object>> GetNextPy();
@ -242,9 +235,6 @@ class ShardReader {
/// \brief populate one row by task list in row-reader mode
MSRStatus ConsumerByRow(int consumer_id);
/// \brief populate one row by task list in block-reader mode
MSRStatus ConsumerByBlock(int consumer_id);
/// \brief get offset address of images within page
std::vector<std::vector<uint64_t>> GetImageOffset(int group_id, int shard_id,
const std::pair<std::string, std::string> &criteria = {"", ""});
@ -262,10 +252,6 @@ class ShardReader {
const std::pair<std::string, std::string> &criteria = {"",
""});
/// \brief create task list in block-reader mode
MSRStatus CreateTasksByBlock(const std::vector<std::tuple<int, int, int, uint64_t>> &row_group_summary,
const std::vector<std::shared_ptr<ShardOperator>> &operators);
/// \brief create category-applied task list
MSRStatus CreateTasksByCategory(const std::vector<std::tuple<int, int, int, uint64_t>> &row_group_summary,
const std::shared_ptr<ShardOperator> &op);
@ -290,15 +276,10 @@ class ShardReader {
/// \brief read one row by one task
TASK_RETURN_CONTENT ConsumerOneTask(int task_id, uint32_t consumer_id);
/// \brief get one row from buffer in block-reader mode
std::shared_ptr<std::vector<std::tuple<std::vector<uint8_t>, json>>> GetRowFromBuffer(int bufId, int rowId);
/// \brief get labels from binary file
std::pair<MSRStatus, std::vector<json>> GetLabelsFromBinaryFile(
int shard_id, const std::vector<std::string> &columns, const std::vector<std::vector<std::string>> &label_offsets);
MSRStatus ReadBlob(const int &shard_id, const uint64_t &page_offset, const int &page_length, const int &buf_id);
/// \brief get classes in one shard
void GetClassesInShard(sqlite3 *db, int shard_id, const std::string sql, std::set<std::string> &categories);
@ -349,16 +330,6 @@ class ShardReader {
// map of delivery
std::unordered_map<int, std::shared_ptr<std::vector<std::tuple<std::vector<uint8_t>, json>>>> delivery_map_;
// Delivery/Iterator mode end
// Block reader mode begin
bool block_reader_; // block-reader mode
int row_id_; // row id in one page
int num_blocks_; // number of pages
// raw data page
std::vector<std::shared_ptr<std::pair<std::vector<std::vector<uint64_t>>, std::vector<json>>>> delivery_block_;
std::unordered_set<int> delivery_block_set_; // set of delivered pages
std::vector<std::vector<uint8_t>> buf_; // page buffer
// Block reader mode end
};
} // namespace mindrecord
} // namespace mindspore

View File

@ -43,9 +43,6 @@ ShardReader::ShardReader() {
page_size_ = 0;
header_size_ = 0;
num_rows_ = 0;
row_id_ = 0;
num_blocks_ = 0;
block_reader_ = false;
num_padded_ = 0;
}
@ -855,8 +852,7 @@ MSRStatus ShardReader::CountTotalRows(const std::vector<std::string> &file_paths
MSRStatus ShardReader::Open(const std::vector<std::string> &file_paths, bool load_dataset, int n_consumer,
const std::vector<std::string> &selected_columns,
const std::vector<std::shared_ptr<ShardOperator>> &operators, const bool &block_reader,
int num_padded) {
const std::vector<std::shared_ptr<ShardOperator>> &operators, int num_padded) {
// Open file and set header by ShardReader
auto ret = Init(file_paths, load_dataset);
if (SUCCESS != ret) {
@ -890,20 +886,9 @@ MSRStatus ShardReader::Open(const std::vector<std::string> &file_paths, bool loa
operators_ = operators;
if (block_reader) {
block_reader_ = true;
if (Open() == FAILED) {
return FAILED;
}
delivery_block_ = std::vector<std::shared_ptr<std::pair<std::vector<std::vector<uint64_t>>, std::vector<json>>>>(
kNumPageInBuffer, std::shared_ptr<std::pair<std::vector<std::vector<uint64_t>>, std::vector<json>>>{});
buf_ = std::vector<std::vector<uint8_t>>(kNumPageInBuffer, std::vector<uint8_t>(page_size_));
} else {
block_reader_ = false;
if (Open(n_consumer) == FAILED) {
return FAILED;
}
}
return SUCCESS;
}
@ -960,29 +945,13 @@ MSRStatus ShardReader::Launch(bool isSimpleReader) {
}
for (int x = 0; x < n_consumer_; ++x) {
if (block_reader_) {
thread_set_[x] = std::thread(&ShardReader::ConsumerByBlock, this, x);
} else {
thread_set_[x] = std::thread(&ShardReader::ConsumerByRow, this, x);
}
}
MS_LOG(INFO) << "Launch read thread successfully.";
return SUCCESS;
}
MSRStatus ShardReader::CreateTasksByBlock(const std::vector<std::tuple<int, int, int, uint64_t>> &row_group_summary,
const std::vector<std::shared_ptr<ShardOperator>> &operators) {
CheckIfColumnInIndex(selected_columns_);
for (const auto &rg : row_group_summary) {
auto shard_id = std::get<0>(rg);
auto group_id = std::get<1>(rg);
auto n_Rows = std::get<3>(rg);
tasks_.InsertTask(TaskType::kCommonTask, shard_id, group_id, std::vector<uint64_t>{n_Rows}, json{});
}
return SUCCESS;
}
MSRStatus ShardReader::CreateTasksByCategory(const std::vector<std::tuple<int, int, int, uint64_t>> &row_group_summary,
const std::shared_ptr<ShardOperator> &op) {
CheckIfColumnInIndex(selected_columns_);
@ -1070,11 +1039,6 @@ MSRStatus ShardReader::CreateTasksByRow(const std::vector<std::tuple<int, int, i
MSRStatus ShardReader::CreateTasks(const std::vector<std::tuple<int, int, int, uint64_t>> &row_group_summary,
const std::vector<std::shared_ptr<ShardOperator>> &operators) {
if (block_reader_) {
if (SUCCESS != CreateTasksByBlock(row_group_summary, operators)) {
return FAILED;
}
} else {
int category_operator = -1;
for (uint32_t i = 0; i < operators.size(); ++i) {
const auto &op = operators[i];
@ -1097,20 +1061,17 @@ MSRStatus ShardReader::CreateTasks(const std::vector<std::tuple<int, int, int, u
return FAILED;
}
}
}
for (uint32_t operator_no = 0; operator_no < operators.size(); operator_no++) {
const auto &op = operators[operator_no];
if (std::dynamic_pointer_cast<ShardCategory>(op)) continue;
if (block_reader_ && std::dynamic_pointer_cast<ShardShuffle>(op)) continue;
if (SUCCESS != (*op)(tasks_)) {
return FAILED;
}
}
if (tasks_.permutation_.empty()) tasks_.MakePerm();
num_rows_ = block_reader_ ? tasks_.SizeOfRows() : tasks_.Size();
num_blocks_ = block_reader_ ? tasks_.Size() : 0;
num_rows_ = tasks_.Size();
MS_LOG(INFO) << "Total rows is " << num_rows_;
return SUCCESS;
}
@ -1207,140 +1168,10 @@ MSRStatus ShardReader::ConsumerByRow(int consumer_id) {
}
}
MSRStatus ShardReader::ReadBlob(const int &shard_id, const uint64_t &page_offset, const int &page_length,
const int &buf_id) {
auto &io_seekg = file_streams_[shard_id]->seekg(page_offset, std::ios::beg);
if (!io_seekg.good() || io_seekg.fail() || io_seekg.bad()) {
MS_LOG(ERROR) << "File seekg failed";
file_streams_[shard_id]->close();
return FAILED;
}
auto &io_read = file_streams_[shard_id]->read(reinterpret_cast<char *>(&buf_[buf_id][0]), page_length);
if (!io_read.good() || io_read.fail() || io_read.bad()) {
MS_LOG(ERROR) << "File read failed";
file_streams_[shard_id]->close();
return FAILED;
}
return SUCCESS;
}
MSRStatus ShardReader::ConsumerByBlock(int consumer_id) {
// Set thread name
#if !defined(_WIN32) && !defined(_WIN64)
auto thread_id = kThreadName + std::to_string(consumer_id);
prctl(PR_SET_NAME, common::SafeCStr(thread_id), 0, 0, 0);
#endif
// Loop forever
for (;;) {
int task_id = 0;
// Get next task ID
task_id = task_id_++;
// All tasks are done, either quit or repeat again
if (task_id >= num_blocks_) {
std::unique_lock<std::mutex> lck(mtx_delivery_);
cv_delivery_.wait(lck, [this] { return interrupt_ || task_id_ < num_blocks_; });
if (interrupt_) {
return SUCCESS;
}
continue;
}
// Pick up task from task list
auto task = tasks_.GetTaskByID(tasks_.permutation_[task_id]);
auto shard_id = std::get<0>(std::get<1>(task));
auto group_id = std::get<1>(std::get<1>(task));
auto row_group_brief = ReadRowGroupBrief(group_id, shard_id, selected_columns_);
if (SUCCESS != std::get<0>(row_group_brief)) {
return FAILED;
}
auto page_length = std::get<2>(row_group_brief);
auto page_offset = std::get<3>(row_group_brief);
MS_LOG(DEBUG) << "Block task " << task_id << tasks_.permutation_[task_id] << ", shard " << shard_id << ", group "
<< group_id << ", page length " << page_length << ", page offset " << page_offset;
// Deliver block data to output map
auto offset_and_labels = std::make_pair(std::get<4>(row_group_brief), std::get<5>(row_group_brief));
int deliver_id = deliver_id_;
// Hanging if maximum map size exceeded otherwise, set batch data in buffer
{
std::unique_lock<std::mutex> lck(mtx_delivery_);
cv_delivery_.wait(lck, [task_id, this] { return interrupt_ || task_id < deliver_id_ + kNumPageInBuffer; });
if (interrupt_) {
return SUCCESS;
}
}
auto buf_id = task_id % kNumPageInBuffer;
delivery_block_[buf_id] =
std::make_shared<std::pair<std::vector<std::vector<uint64_t>>, std::vector<json>>>(offset_and_labels);
// Read blob
if (ReadBlob(shard_id, page_offset, page_length, buf_id) != SUCCESS) {
return FAILED;
}
{
std::unique_lock<std::mutex> lck(mtx_delivery_);
delivery_block_set_.insert(task_id);
}
cv_iterator_.notify_one();
}
}
std::shared_ptr<std::vector<std::tuple<std::vector<uint8_t>, json>>> ShardReader::GetRowFromBuffer(int buf_id,
int rowId) {
auto &blob_page = buf_[buf_id];
auto &offsets = (*delivery_block_[buf_id]).first;
auto &labels = (*delivery_block_[buf_id]).second;
auto &addr_start = offsets[rowId][0];
auto &addr_end = offsets[rowId][1];
std::vector<uint8_t> images(blob_page.begin() + addr_start, blob_page.begin() + addr_end);
std::vector<std::tuple<std::vector<uint8_t>, json>> batch;
batch.emplace_back(std::move(images), std::move(labels[rowId]));
return std::make_shared<std::vector<std::tuple<std::vector<uint8_t>, json>>>(std::move(batch));
}
std::vector<std::tuple<std::vector<uint8_t>, json>> ShardReader::GetBlockNext() {
if (deliver_id_ >= num_blocks_) {
return std::vector<std::tuple<std::vector<uint8_t>, json>>();
}
if (row_id_ == 0) {
std::unique_lock<std::mutex> lck(mtx_delivery_);
cv_iterator_.wait(lck, [this] { return interrupt_ || (delivery_block_set_.count(deliver_id_) > 0); });
if (interrupt_) {
return std::vector<std::tuple<std::vector<uint8_t>, json>>();
}
}
auto buf_id = deliver_id_ % kNumPageInBuffer;
auto res = GetRowFromBuffer(buf_id, row_id_);
row_id_++;
if (row_id_ == (*delivery_block_[buf_id]).first.size()) {
row_id_ = 0;
{
std::unique_lock<std::mutex> lck(mtx_delivery_);
delivery_block_set_.erase(deliver_id_++);
}
cv_delivery_.notify_all();
}
return *res;
}
std::vector<std::tuple<std::vector<uint8_t>, json>> ShardReader::GetNext() {
if (interrupt_) {
return std::vector<std::tuple<std::vector<uint8_t>, json>>();
}
if (block_reader_) return GetBlockNext();
if (deliver_id_ >= static_cast<int>(tasks_.Size())) {
return std::vector<std::tuple<std::vector<uint8_t>, json>>();
}
@ -1366,9 +1197,6 @@ std::pair<TaskType, std::vector<std::tuple<std::vector<uint8_t>, json>>> ShardRe
if (interrupt_) {
return std::make_pair(TaskType::kCommonTask, std::vector<std::tuple<std::vector<uint8_t>, json>>());
}
if (block_reader_) {
return std::make_pair(TaskType::kCommonTask, GetBlockNext());
}
const auto &ret = ConsumerOneTask(task_id, consumer_id);
if (SUCCESS != ret.first) {
return std::make_pair(TaskType::kCommonTask, std::vector<std::tuple<std::vector<uint8_t>, json>>());
@ -1423,7 +1251,6 @@ void ShardReader::Reset() {
}
void ShardReader::ShuffleTask() {
if (block_reader_) return;
// exist shuffle and distributed sampler in ops, skip shuffle
bool has_sharding = false;
for (const auto &op : operators_) {

View File

@ -300,7 +300,6 @@ def check_padding_options(param_dict):
"""
columns_list = param_dict.get('columns_list')
block_reader = param_dict.get('block_reader')
padded_sample, num_padded = param_dict.get('padded_sample'), param_dict.get('num_padded')
if padded_sample is not None:
if num_padded is None:
@ -312,9 +311,6 @@ def check_padding_options(param_dict):
for column in columns_list:
if column not in padded_sample:
raise ValueError("padded_sample cannot match columns_list.")
if block_reader:
raise RuntimeError("block_reader and padded_sample cannot be specified at the same time.")
if padded_sample is None and num_padded is not None:
raise RuntimeError("num_padded is specified but padded_sample is not.")

View File

@ -2795,7 +2795,6 @@ class MindDataset(MappableDataset):
num_shards (int, optional): Number of shards that the dataset should be divided into (default=None).
shard_id (int, optional): The shard ID within num_shards (default=None). This
argument should be specified only when num_shards is also specified.
block_reader (bool, optional): Whether read data by block mode (default=False).
sampler (Sampler, optional): Object used to choose samples from the
dataset (default=None, sampler is exclusive
with shuffle and block_reader). Support list: SubsetRandomSampler,
@ -2810,13 +2809,12 @@ class MindDataset(MappableDataset):
Raises:
ValueError: If num_shards is specified but shard_id is None.
ValueError: If shard_id is specified but num_shards is None.
ValueError: If block reader is true but partition is specified.
"""
@check_minddataset
def __init__(self, dataset_file, columns_list=None, num_parallel_workers=None,
shuffle=None, num_shards=None, shard_id=None,
block_reader=False, sampler=None, padded_sample=None,
sampler=None, padded_sample=None,
num_padded=None, num_samples=None):
super().__init__(num_parallel_workers)
if isinstance(dataset_file, list):
@ -2828,14 +2826,7 @@ class MindDataset(MappableDataset):
self.shuffle_option = shuffle
self.num_shards = num_shards
self.shard_id = shard_id
if block_reader is True and num_shards is not None:
raise ValueError("block_reader not allowed true when use partitions")
if block_reader is True and shuffle is True:
raise ValueError("block_reader not allowed true when use shuffle")
if block_reader is True:
if shuffle is False:
logger.warning("WARN: global shuffle is not used.")
if sampler is not None:
@ -2846,15 +2837,9 @@ class MindDataset(MappableDataset):
self.sampler = _select_sampler(num_samples, sampler, shuffle, num_shards, shard_id)
self.num_samples = num_samples
# sampler exclusive
if block_reader is True and sampler is not None:
raise ValueError("block_reader not allowed true when use sampler")
if num_padded is None:
num_padded = 0
self.block_reader = block_reader
self.padded_sample = padded_sample
self.num_padded = num_padded
@ -2873,7 +2858,6 @@ class MindDataset(MappableDataset):
args["columns_list"] = self.columns_list
args["shuffle_option"] = self.shuffle_option
args["num_samples"] = self.num_samples
args["block_reader"] = self.block_reader
args["num_padded"] = self.num_padded
args["padded_sample"] = padded_sample
args["sampler"] = self.sampler

View File

@ -279,7 +279,7 @@ def create_node(node):
sampler = construct_sampler(node.get('sampler'))
pyobj = pyclass(node['dataset_file'], node.get('columns_list'),
node.get('num_parallel_workers'), node.get('seed'), node.get('num_shards'),
node.get('shard_id'), node.get('block_reader'), sampler)
node.get('shard_id'), sampler)
elif dataset_op == 'TFRecordDataset':
pyobj = pyclass(node['dataset_files'], node.get('schema'), node.get('column_list'),

View File

@ -273,7 +273,6 @@ def check_minddataset(method):
nreq_param_int = ['num_samples', 'num_parallel_workers', 'seed', 'num_shards', 'shard_id', 'num_padded']
nreq_param_list = ['columns_list']
nreq_param_bool = ['block_reader']
nreq_param_dict = ['padded_sample']
dataset_file = param_dict.get('dataset_file')
@ -287,7 +286,6 @@ def check_minddataset(method):
validate_dataset_param_value(nreq_param_int, param_dict, int)
validate_dataset_param_value(nreq_param_list, param_dict, list)
validate_dataset_param_value(nreq_param_bool, param_dict, bool)
validate_dataset_param_value(nreq_param_dict, param_dict, dict)
check_sampler_shuffle_shard_options(param_dict)

View File

@ -435,7 +435,6 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordBlockReaderRepeat) {
.SetLoadDataset(true)
.SetRowsPerBuffer(3)
.SetNumMindRecordWorkers(4)
.SetBlockReader()
.SetColumnsToLoad(column_list);
rc = builder.Build(&my_mindrecord_op);
ASSERT_TRUE(rc.IsOk());

View File

@ -94,31 +94,6 @@ TEST_F(TestShardReader, TestShardReaderSample) {
dataset.Close();
}
TEST_F(TestShardReader, TestShardReaderBlock) {
MS_LOG(INFO) << FormatInfo("Test read imageNet with block way");
std::string file_name = "./imagenet.shard01";
auto column_list = std::vector<std::string>{"label"};
std::vector<std::shared_ptr<ShardOperator>> ops;
ops.push_back(std::make_shared<ShardSample>(3));
ShardReader dataset;
const bool kBlockReader = true;
dataset.Open({file_name}, true, 4, column_list, ops, kBlockReader);
dataset.Launch();
while (true) {
auto x = dataset.GetBlockNext();
if (x.empty()) break;
for (auto &j : x) {
for (auto &item : std::get<1>(j).items()) {
MS_LOG(INFO) << "key: " << item.key() << ", value: " << item.value().dump();
}
}
}
dataset.Finish();
dataset.Close();
}
TEST_F(TestShardReader, TestShardReaderEasy) {
MS_LOG(INFO) << FormatInfo("Test read imageNet");
std::string file_name = "./imagenet.shard01";

View File

@ -591,49 +591,6 @@ def test_cv_minddataset_issue_888(add_and_remove_cv_file):
assert num_iter == 18
def test_cv_minddataset_blockreader_tutorial(add_and_remove_cv_file):
"""tutorial for cv minddataset."""
columns_list = ["data", "label"]
num_readers = 4
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, block_reader=True)
assert data_set.get_dataset_size() == 10
repeat_num = 2
data_set = data_set.repeat(repeat_num)
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- block reader repeat tow {} -----------------".format(num_iter))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
num_iter += 1
assert num_iter == 20
def test_cv_minddataset_blockreader_some_field_not_in_index_tutorial(add_and_remove_cv_file):
"""tutorial for cv minddataset."""
columns_list = ["id", "data", "label"]
num_readers = 4
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False,
block_reader=True)
assert data_set.get_dataset_size() == 10
repeat_num = 2
data_set = data_set.repeat(repeat_num)
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- block reader repeat tow {} -----------------".format(num_iter))
logger.info(
"-------------- item[id]: {} ----------------------------".format(item["id"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
num_iter += 1
assert num_iter == 20
def test_cv_minddataset_reader_file_list(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]