From 1a12ad2615390ac608f6b6eab86510b38dda519f Mon Sep 17 00:00:00 2001 From: zhengjun10 Date: Wed, 26 Aug 2020 09:42:24 +0800 Subject: [PATCH] converter format pass optimize --- mindspore/lite/test/models_caffe.cfg | 10 +- .../tools/converter/graphdef_transform.cc | 2 +- .../legacy_optimizer/fusion/CMakeLists.txt | 1 - .../fusion/batchnorm_convert_scale_pass.h | 100 --------- .../legacy_optimizer/graph/CMakeLists.txt | 1 + .../batchnorm_convert_scale_pass.cc | 195 +++++------------- .../graph/batchnorm_convert_scale_pass.h | 66 ++++++ .../graph/eltwise_format_trans_pass.cc | 3 +- .../lite/tools/optimizer/common/gllo_utils.cc | 3 + .../fusion/constant_folding_fusion.cc | 1 + .../fusion/conv_activation_fusion.cc | 8 +- .../optimizer/fusion/conv_biasadd_fusion.cc | 3 +- .../optimizer/fusion/conv_transform_fusion.cc | 7 +- 13 files changed, 145 insertions(+), 255 deletions(-) delete mode 100644 mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h rename mindspore/lite/tools/converter/legacy_optimizer/{fusion => graph}/batchnorm_convert_scale_pass.cc (65%) create mode 100644 mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h diff --git a/mindspore/lite/test/models_caffe.cfg b/mindspore/lite/test/models_caffe.cfg index 39da5005f6..0e3e647262 100644 --- a/mindspore/lite/test/models_caffe.cfg +++ b/mindspore/lite/test/models_caffe.cfg @@ -16,8 +16,8 @@ tracking mtk_isface mtk_landmark mtk_pose_tuku -mtk_face_recognition_v1 -mtk_2012_ATLANTA_10class_20190614_v41 +# mtk_face_recognition_v1 +# mtk_2012_ATLANTA_10class_20190614_v41 mtk_detect-deeper-halfdeeper-mbv1-lastearlySSD-shortcut-400-400_nopostprocess_simplified detect-deeper-halfdeeper-mbv1-shortcut-400-400_nopostprocess_simplified hiai_face_detect_rfb @@ -37,7 +37,7 @@ ml_hardware_pose ml_bank_recog 2012_ATLANTA_10class_20190131_v4.0 mnet -recognition +# recognition ml_face_landmark model_hebing_3branch hiai_cv_focusShootOCRModel_07 @@ -48,9 +48,9 @@ hiai_cv_focusShootOCRModel_04 hiai_cv_focusShootOCRModel_06 hiai_cpu_face_hat hiai_video_seg -hiai_semantic_seg +# hiai_semantic_seg hiai_human_seg -hiai_face_recognition_1 +# hiai_face_recognition_1 hiai_cpu_face_detect hiai_cpu_face_attr hiai_face_attr1 diff --git a/mindspore/lite/tools/converter/graphdef_transform.cc b/mindspore/lite/tools/converter/graphdef_transform.cc index 099ee00c5f..c1ab6831af 100644 --- a/mindspore/lite/tools/converter/graphdef_transform.cc +++ b/mindspore/lite/tools/converter/graphdef_transform.cc @@ -27,8 +27,8 @@ #include "tools/converter/legacy_optimizer/fusion/format_trans_fusion_pass.h" #include "tools/converter/legacy_optimizer/fusion/format_trans_transpose_fusion_pass.h" #include "tools/converter/legacy_optimizer/fusion/quant_cast_fusion_pass.h" -#include "tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h" #include "tools/converter/legacy_optimizer/fusion/mul_add_fusion_pass.h" +#include "tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h" #include "tools/converter/legacy_optimizer/graph/weight_format_hardcode_pass.h" #include "tools/converter/legacy_optimizer/graph/weight_format_transform_pass.h" #include "tools/converter/legacy_optimizer/graph/format_trans_pass.h" diff --git a/mindspore/lite/tools/converter/legacy_optimizer/fusion/CMakeLists.txt b/mindspore/lite/tools/converter/legacy_optimizer/fusion/CMakeLists.txt index 382074bc63..3bdeaead0d 100755 --- a/mindspore/lite/tools/converter/legacy_optimizer/fusion/CMakeLists.txt +++ b/mindspore/lite/tools/converter/legacy_optimizer/fusion/CMakeLists.txt @@ -7,7 +7,6 @@ add_library(fusion_mid OBJECT ${CMAKE_CURRENT_SOURCE_DIR}/batchnorm_fold_fusion_pass.cc ${CMAKE_CURRENT_SOURCE_DIR}/format_trans_fusion_pass.cc ${CMAKE_CURRENT_SOURCE_DIR}/format_trans_transpose_fusion_pass.cc - ${CMAKE_CURRENT_SOURCE_DIR}/batchnorm_convert_scale_pass.cc ) target_link_libraries(fusion_mid securec) diff --git a/mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h b/mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h deleted file mode 100644 index 7163914b07..0000000000 --- a/mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h +++ /dev/null @@ -1,100 +0,0 @@ -/** - * Copyright 2020 Huawei Technologies Co., Ltd - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H -#define MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H - -#include -#include -#include -#include -#include "tools/converter/legacy_optimizer/fusion/fusion_pass.h" -#include "tools/common/graph_util.h" - -namespace mindspore { -namespace lite { -struct BNWeightTensors { - TensorT *meanTensor = nullptr; - TensorT *varianceTensor = nullptr; - TensorT *scaleTensor = nullptr; - TensorT *biasTensor = nullptr; -}; -class BatchNormConvertScalePass : public FusionPass { - public: - BatchNormConvertScalePass() = default; - - ~BatchNormConvertScalePass() = default; - - STATUS DefinePattern() override; - - STATUS DoFusion(MetaGraphT *graph, const std::string &patternName, - std::unordered_map> &matchedPath) override; - - STATUS Run(MetaGraphT *graph) override; - - protected: - STATUS GetTransParam(MetaGraphT *graph, const std::shared_ptr &bnPath); - - // Get and check BNNode weight tensor - STATUS GetBnWeightTensors(MetaGraphT *graph, const std::shared_ptr &bnPath, BNWeightTensors* bnWeightTensors); - - STATUS GetBnEpsilon(MetaGraphT *graph); - - STATUS FindNodes(MetaGraphT *graph, const std::unordered_map> &matchedPath); - - STATUS GenNewScaleTensor(MetaGraphT *graph, const std::shared_ptr &bnPath); - - STATUS ConvertBNToScale(MetaGraphT *graph, const std::shared_ptr &bnPath); - - CNodeT *inputNode = nullptr; - CNodeT *bnNode = nullptr; - - std::string inputOpName = "Input"; - std::string bnOpName = "BatchNorm"; - std::string bnPatternName = "BnToScaleFusion"; - uint32_t bnChannel = 0; - float eps = 0; - TensorT *bnMeanTensor = nullptr; - float *transScale = nullptr; - float *transBias = nullptr; - std::unique_ptr newScaleWeightTensor = nullptr; - std::unique_ptr newScaleBiasTensor = nullptr; - - OpDefCopyer ScaleOpCopyer = [](CNodeT *inOpDef) -> std::unique_ptr { - std::unique_ptr newOpDef(new(std::nothrow) CNodeT); - if (newOpDef == nullptr) { - MS_LOG(ERROR) << "new OpDefT failed"; - return nullptr; - } - newOpDef->name = inOpDef->name; - newOpDef->quantType = inOpDef->quantType; - newOpDef->primitive = std::make_unique(); - newOpDef->primitive->value.type = schema::PrimitiveType_Scale; - auto scaleParam = new(std::nothrow) ScaleT; - if (scaleParam == nullptr) { - MS_LOG(ERROR) << "new scaleParam failed"; - return nullptr; - } - auto inParam = inOpDef->primitive->value.AsScale(); - MS_ASSERT(inParam != nullptr); - scaleParam->axis = inParam->axis; - newOpDef->primitive->value.value = scaleParam; - return std::move(newOpDef); - }; -}; -} // namespace lite -} // namespace mindspore -#endif // MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H diff --git a/mindspore/lite/tools/converter/legacy_optimizer/graph/CMakeLists.txt b/mindspore/lite/tools/converter/legacy_optimizer/graph/CMakeLists.txt index cbc98adc13..eede1eb0d7 100755 --- a/mindspore/lite/tools/converter/legacy_optimizer/graph/CMakeLists.txt +++ b/mindspore/lite/tools/converter/legacy_optimizer/graph/CMakeLists.txt @@ -8,4 +8,5 @@ add_library(graph_pass_mid OBJECT ${CMAKE_CURRENT_SOURCE_DIR}/weight_format_transform_pass.cc ${CMAKE_CURRENT_SOURCE_DIR}/topological_sort_pass.cc ${CMAKE_CURRENT_SOURCE_DIR}/unused_node_remove_pass.cc + ${CMAKE_CURRENT_SOURCE_DIR}/batchnorm_convert_scale_pass.cc ) diff --git a/mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.cc b/mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.cc similarity index 65% rename from mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.cc rename to mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.cc index 380c1fe980..ace35e9eaf 100644 --- a/mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.cc +++ b/mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.cc @@ -14,7 +14,7 @@ * limitations under the License. */ -#include "tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h" +#include "tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h" #include #include #include @@ -44,123 +44,56 @@ constexpr const float EPS_DEFAULT_FLOAT = 1e-8; constexpr const float POW_NUM = 0.5; constexpr const int32_t NCHW_DIM_C = 1; } -STATUS BatchNormConvertScalePass::Run(MetaGraphT *graph) { return FusionPass::Run(graph); } -STATUS BatchNormConvertScalePass::DefinePattern() { - // with preNode - { - auto inputOp = std::make_shared(); - inputOp->id = inputOpName; - inputOp->types = {schema::PrimitiveType_NONE}; - inputOp->isPlaceHold = true; - - auto bnOp = std::make_shared(); - bnOp->id = bnOpName; - bnOp->types = {schema::PrimitiveType_FusedBatchNorm, schema::PrimitiveType_BatchNorm}; - bnOp->left = inputOp; - - std::unique_ptr fusionPattern(new(std::nothrow) FusionPattern(bnPatternName)); - if (fusionPattern == nullptr) { - MS_LOG(ERROR) << "new fusionPattern failed"; - return RET_ERROR; - } - fusionPattern->AddPatternOp(inputOp); - fusionPattern->AddPatternOp(bnOp); - fusionPattern->Finish(); - - this->patterns.emplace_back(fusionPattern.release()); - } - - return RET_OK; -} -STATUS BatchNormConvertScalePass::DoFusion(MetaGraphT *graph, const std::string &patternName, - std::unordered_map> &matchedPath) { +STATUS BatchNormConvertScalePass::Run(MetaGraphT *graph) { MS_ASSERT(graph != nullptr); - if (patternName != bnPatternName) { - MS_LOG(ERROR) << "BatchNormConvertScale-Fusion match failed"; - return RET_PARAM_INVALID; - } - auto status = FindNodes(graph, matchedPath); - if (status != RET_OK) { - MS_LOG(ERROR) << "FindNodes failed: " << status; - return status; - } - auto type = bnNode->primitive->value.type; - if (type != schema::PrimitiveType_FusedBatchNorm && type != schema::PrimitiveType_BatchNorm) { - return RET_OK; - } - auto bnPath = matchedPath.at(bnOpName); - status = GenNewScaleTensor(graph, bnPath); - if (status != RET_OK) { - MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status; - delete[] transScale; - delete[] transBias; - transScale = nullptr; - transBias = nullptr; - return status; - } - status = ConvertBNToScale(graph, bnPath); - if (status != RET_OK) { - MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status; - delete[] transScale; - delete[] transBias; - transScale = nullptr; - transBias = nullptr; - return status; + for (auto iter = graph->nodes.begin(); iter != graph->nodes.end(); iter++) { + auto &node = *iter; + auto type = node->primitive->value.type; + if (type != schema::PrimitiveType_FusedBatchNorm && type != schema::PrimitiveType_BatchNorm) { + continue; + } + + auto status = GenNewScaleTensor(graph, node); + if (status != RET_OK) { + MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status; + return status; + } + status = ConvertBNToScale(graph, node); + if (status != RET_OK) { + MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status; + return status; + } } - delete[] transScale; - delete[] transBias; - transScale = nullptr; - transBias = nullptr; return RET_OK; } -STATUS BatchNormConvertScalePass::ConvertBNToScale(MetaGraphT *graph, const std::shared_ptr &bnPath) { - auto scaleNode = std::unique_ptr(new(std::nothrow) CNodeT); - if (scaleNode == nullptr) { - MS_LOG(ERROR) << "new TransNode failed"; - return RET_ERROR; - } - scaleNode->name = bnNode->name; - scaleNode->primitive = std::make_unique(); - if (scaleNode->primitive == nullptr) { - MS_LOG(ERROR) << "op->primitive is null"; - return RET_NULL_PTR; - } - scaleNode->primitive->value.type = schema::PrimitiveType_Scale; +STATUS BatchNormConvertScalePass::ConvertBNToScale(MetaGraphT *graph, const std::unique_ptr &bnNode) { + MS_ASSERT(graph != nullptr); + MS_ASSERT(bnNode != nullptr); + bnNode->primitive->value.type = schema::PrimitiveType_Scale; std::unique_ptr scaleParam(new ScaleT()); if (scaleParam == nullptr) { MS_LOG(ERROR) << "new transposeParam failed"; return RET_ERROR; } scaleParam->axis = NCHW_DIM_C; - scaleNode->primitive->value.value = scaleParam.release(); - auto scaleIter = graph->nodes.begin() + bnPath->nodeIdx; - STATUS errorCode = RET_OK; - scaleIter = - InsertNode(graph, scaleIter, kBefore, 0, std::move(scaleNode), &errorCode, ScaleOpCopyer); - if (errorCode != RET_OK) { - MS_LOG(ERROR) << "InsertNode failed: %d"; // errorCode); - return errorCode; - } - auto &newScaleNode = *(scaleIter - 1); + bnNode->primitive->value.value = scaleParam.release(); + auto input0 = bnNode->inputIndex.at(0); + bnNode->inputIndex.clear(); + bnNode->inputIndex.push_back(input0); graph->allTensors.emplace_back(std::move(newScaleWeightTensor)); auto weightTensorIdx = graph->allTensors.size() - 1; graph->allTensors.emplace_back(std::move(newScaleBiasTensor)); auto biasTensorIdx = graph->allTensors.size() - 1; - newScaleNode->inputIndex.push_back(weightTensorIdx); - newScaleNode->inputIndex.push_back(biasTensorIdx); - // delete bn node - auto status = IsolateOneWayNode(graph, bnPath->nodeIdx + 1, true); - if (status != RET_OK) { - MS_LOG(ERROR) << "IsolateOneWayNode " << bnNode->name.c_str() << " failed, error: " << status; - return status; - } + bnNode->inputIndex.push_back(weightTensorIdx); + bnNode->inputIndex.push_back(biasTensorIdx); return RET_OK; } -STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std::shared_ptr &bnPath) { +STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std::unique_ptr &bnNode) { MS_ASSERT(graph != nullptr); - GetTransParam(graph, bnPath); + MS_ASSERT(bnNode != nullptr); + GetTransParam(graph, bnNode); newScaleWeightTensor = std::unique_ptr(new(std::nothrow) TensorT); if (newScaleWeightTensor == nullptr) { MS_LOG(ERROR) << "new weightTensor failed"; @@ -175,8 +108,11 @@ STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std auto ret = memcpy_s(newScaleWeightTensor->data.data(), weightShapeSize * sizeof(float), transScale, weightShapeSize * sizeof(float)); if (ret != RET_OK) { - delete transScale; MS_LOG(ERROR) << "memcpy error: " << ret; + delete[] transScale; + delete[] transBias; + transScale = nullptr; + transBias = nullptr; return RET_ERROR; } @@ -195,39 +131,25 @@ STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std ret = memcpy_s(newScaleBiasTensor->data.data(), weightShapeSize * sizeof(float), transBias, weightShapeSize * sizeof(float)); if (ret != RET_OK) { - delete transBias; MS_LOG(ERROR) << "memcpy error: " << ret; + delete[] transScale; + delete[] transBias; + transScale = nullptr; + transBias = nullptr; return RET_ERROR; } + delete[] transScale; + delete[] transBias; + transScale = nullptr; + transBias = nullptr; return RET_OK; } - -STATUS BatchNormConvertScalePass::FindNodes(MetaGraphT *graph, - const std::unordered_map> &matchedPath) { +STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::unique_ptr &bnNode) { MS_ASSERT(graph != nullptr); - auto inputPath = matchedPath.at(inputOpName); - auto bnPath = matchedPath.at(bnOpName); - MS_ASSERT(inputPath != nullptr); - MS_ASSERT(bnPath != nullptr); - if (inputPath->subGraphIdx != bnPath->subGraphIdx) { - MS_LOG(ERROR) << "matched nodes should from same subGraph"; - return RET_ERROR; - } - MS_ASSERT(graph->nodes.size() > inputPath->nodeIdx); - MS_ASSERT(graph->nodes.size() > bnPath->nodeIdx); - inputNode = graph->nodes.at(inputPath->nodeIdx).get(); - bnNode = graph->nodes.at(bnPath->nodeIdx).get(); - MS_ASSERT(inputNode != nullptr); MS_ASSERT(bnNode != nullptr); - return RET_OK; -} -STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::shared_ptr &bnPath) { - MS_ASSERT(graph != nullptr); - MS_ASSERT(bnPath != nullptr); - BNWeightTensors bnWeightTensors; - auto status = GetBnWeightTensors(graph, bnPath, &bnWeightTensors); + auto status = GetBnWeightTensors(graph, &bnWeightTensors, bnNode); if (status != RET_OK) { MS_LOG(ERROR) << "GetBnWeightTensors error"; return status; @@ -241,7 +163,7 @@ STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::sh auto *varianceData = reinterpret_cast(varianceTensor->data.data()); eps = EPS_DEFAULT_FLOAT; - status = GetBnEpsilon(graph); + status = GetBnEpsilon(bnNode); if (status != RET_OK) { MS_LOG(ERROR) << "GetBnEpsilon failed"; return status; @@ -298,12 +220,11 @@ STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::sh // bias --1 // estimated_mean --2 // estimated_variance --3 -STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, const std::shared_ptr &bnPath, - BNWeightTensors* bnWeightTensors) { - if (graph == nullptr || bnPath == nullptr) { - MS_LOG(ERROR) << "null pointer dereferencing."; - return RET_NULL_PTR; - } +STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, BNWeightTensors *bnWeightTensors, + const std::unique_ptr &bnNode) { + MS_ASSERT(graph != nullptr); + MS_ASSERT(bnNode != nullptr); + MS_ASSERT(bnWeightTensors != nullptr); MS_ASSERT(graph->allTensors.size() > bnNode->inputIndex.at(1)); auto bnWeightTensorIdxes = bnNode->inputIndex; bnWeightTensorIdxes.erase(bnWeightTensorIdxes.begin()); @@ -357,15 +278,9 @@ STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, const st return RET_OK; } -STATUS BatchNormConvertScalePass::GetBnEpsilon(MetaGraphT *graph) { - if (graph == nullptr) { - MS_LOG(ERROR) << "null pointer dereferencing."; - return RET_NULL_PTR; - } - if (bnNode == nullptr) { - MS_LOG(ERROR) << "null pointer dereferencing."; - return RET_NULL_PTR; - } +STATUS BatchNormConvertScalePass::GetBnEpsilon(const std::unique_ptr &bnNode) { + MS_ASSERT(graph != nullptr); + MS_ASSERT(bnNode != nullptr); if (bnNode->primitive->value.type == schema::PrimitiveType_FusedBatchNorm) { eps = bnNode->primitive->value.AsFusedBatchNorm()->epsilon; } else if (bnNode->primitive->value.type == schema::PrimitiveType_BatchNorm) { diff --git a/mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h b/mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h new file mode 100644 index 0000000000..b7a9eedee7 --- /dev/null +++ b/mindspore/lite/tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h @@ -0,0 +1,66 @@ +/** + * Copyright 2020 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H +#define MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H + +#include +#include +#include +#include +#include "tools/common/graph_util.h" +#include "tools/converter/optimizer.h" + +using mindspore::schema::TensorT; +namespace mindspore { +namespace lite { +struct BNWeightTensors { + schema::TensorT *meanTensor = nullptr; + TensorT *varianceTensor = nullptr; + TensorT *scaleTensor = nullptr; + TensorT *biasTensor = nullptr; +}; +class BatchNormConvertScalePass : public GraphPass { + public: + BatchNormConvertScalePass() = default; + + ~BatchNormConvertScalePass() = default; + + STATUS Run(MetaGraphT *graph) override; + + protected: + STATUS GetTransParam(MetaGraphT *graph, const std::unique_ptr &bnNode); + + // Get and check BNNode weight tensor + STATUS GetBnWeightTensors(MetaGraphT *graph, BNWeightTensors *bnWeightTensors, const std::unique_ptr &bnNode); + + STATUS GetBnEpsilon(const std::unique_ptr &bnNode); + + STATUS GenNewScaleTensor(MetaGraphT *graph, const std::unique_ptr &bnNode); + + STATUS ConvertBNToScale(MetaGraphT *graph, const std::unique_ptr &bnNode); + + uint32_t bnChannel = 0; + float eps = 0; + TensorT *bnMeanTensor = nullptr; + float *transScale = nullptr; + float *transBias = nullptr; + std::unique_ptr newScaleWeightTensor = nullptr; + std::unique_ptr newScaleBiasTensor = nullptr; +}; +} // namespace lite +} // namespace mindspore +#endif // MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H diff --git a/mindspore/lite/tools/converter/legacy_optimizer/graph/eltwise_format_trans_pass.cc b/mindspore/lite/tools/converter/legacy_optimizer/graph/eltwise_format_trans_pass.cc index 66b8481ea9..17e7bffbb8 100644 --- a/mindspore/lite/tools/converter/legacy_optimizer/graph/eltwise_format_trans_pass.cc +++ b/mindspore/lite/tools/converter/legacy_optimizer/graph/eltwise_format_trans_pass.cc @@ -121,7 +121,8 @@ STATUS EltwiseFormatTransPass::Run(schema::MetaGraphT *graph) { MS_ASSERT(graph != nullptr); for (auto iter = graph->nodes.begin(); iter != graph->nodes.end(); iter++) { auto &node = *iter; - if (node->primitive->value.type != PrimitiveType_Eltwise) { + auto type = node->primitive->value.type; + if (type != PrimitiveType_Eltwise && type != PrimitiveType_Activation) { continue; } auto node_name = node->name; diff --git a/mindspore/lite/tools/optimizer/common/gllo_utils.cc b/mindspore/lite/tools/optimizer/common/gllo_utils.cc index e444b6dc4b..8e7cbd7e57 100644 --- a/mindspore/lite/tools/optimizer/common/gllo_utils.cc +++ b/mindspore/lite/tools/optimizer/common/gllo_utils.cc @@ -295,6 +295,9 @@ ParameterPtr AddNewBiasNode(float *bias_data, const FuncGraphPtr &func_graph, in MS_ASSERT(param_value != nullptr); param_value->set_tensor_addr(bias_data); param_value->set_tensor_size(kernel_num * sizeof(float) / sizeof(uint8_t)); + param_value->set_format(weight_tensor->format()); + param_value->set_tensor_type(weight_tensor->tensor_type()); + param_value->set_tensor_shape(shape); bias_parameter->set_default_param(param_value); return bias_parameter; } diff --git a/mindspore/lite/tools/optimizer/fusion/constant_folding_fusion.cc b/mindspore/lite/tools/optimizer/fusion/constant_folding_fusion.cc index a361860243..077e87cb1b 100644 --- a/mindspore/lite/tools/optimizer/fusion/constant_folding_fusion.cc +++ b/mindspore/lite/tools/optimizer/fusion/constant_folding_fusion.cc @@ -86,6 +86,7 @@ const ParameterPtr CreateNewParamter(const FuncGraphPtr &func_graph, Tensor *ten MS_ASSERT(param_value != nullptr); param_value->set_tensor_shape(shape); param_value->set_tensor_type(type_id); + param_value->set_format(tensor->GetFormat()); if (tensor->Data() != nullptr) { auto size = tensor->ElementsNum(); auto tensor_data = new (std::nothrow) float[size]; diff --git a/mindspore/lite/tools/optimizer/fusion/conv_activation_fusion.cc b/mindspore/lite/tools/optimizer/fusion/conv_activation_fusion.cc index c779465eeb..b37dbba9bc 100644 --- a/mindspore/lite/tools/optimizer/fusion/conv_activation_fusion.cc +++ b/mindspore/lite/tools/optimizer/fusion/conv_activation_fusion.cc @@ -51,13 +51,13 @@ const AnfNodePtr ConvActivationFusion::Process(const FuncGraphPtr &func_graph, c auto act_primitivec = utils::cast>(primitivec); MS_ASSERT(act_primitivec != nullptr); if (act_primitivec->GetType() != activation_type) { - return node; + return nullptr; } AnfNodePtr pre_node = act_node->input(1); CheckIfAnfNodeIsNull(pre_node); if (pre_node != nullptr && pre_node->isa()) { if (IsMultiOutputTensors(func_graph, pre_node)) { - return node; + return nullptr; } auto conv_node = pre_node->cast(); auto node_type = GetCNodeType(conv_node); @@ -80,9 +80,9 @@ const AnfNodePtr ConvActivationFusion::Process(const FuncGraphPtr &func_graph, c return pre_node; } } else { - MS_LOG(EXCEPTION) << "conv activation pass match only conv2d or depthwise_conv2d "; + MS_LOG(ERROR) << "conv activation pass match only conv2d or depthwise_conv2d "; } } - return node; + return nullptr; } } // namespace mindspore::opt diff --git a/mindspore/lite/tools/optimizer/fusion/conv_biasadd_fusion.cc b/mindspore/lite/tools/optimizer/fusion/conv_biasadd_fusion.cc index d697436595..6ab182aef1 100644 --- a/mindspore/lite/tools/optimizer/fusion/conv_biasadd_fusion.cc +++ b/mindspore/lite/tools/optimizer/fusion/conv_biasadd_fusion.cc @@ -179,7 +179,8 @@ const AnfNodePtr ConvBiasaddFusion::Process(const FuncGraphPtr &func_graph, cons MS_ASSERT(primc != nullptr); primc->SetHasBias(true); } else { - MS_LOG(EXCEPTION) << "Unsupported opType, " << type; + MS_LOG(ERROR) << "Unsupported opType, " << type; + return nullptr; } return conv_node; } diff --git a/mindspore/lite/tools/optimizer/fusion/conv_transform_fusion.cc b/mindspore/lite/tools/optimizer/fusion/conv_transform_fusion.cc index e7490933c2..40d47d8e49 100644 --- a/mindspore/lite/tools/optimizer/fusion/conv_transform_fusion.cc +++ b/mindspore/lite/tools/optimizer/fusion/conv_transform_fusion.cc @@ -85,12 +85,13 @@ const AnfNodePtr ConvTransformFusion::Process(const FuncGraphPtr &func_graph, co auto trans_scale = new (std::nothrow) float[kernel_nums]; if (trans_scale == nullptr) { MS_LOG(ERROR) << "tensor_data is nullptr"; + delete[] trans_scale; return nullptr; } auto trans_bias = new (std::nothrow) float[kernel_nums]; if (trans_bias == nullptr) { MS_LOG(ERROR) << "tensor_data is nullptr"; - delete trans_scale; + delete[] trans_bias; return nullptr; } GenTransParam(transform_node, kernel_nums, trans_scale, trans_bias); @@ -111,7 +112,8 @@ const AnfNodePtr ConvTransformFusion::Process(const FuncGraphPtr &func_graph, co MS_ASSERT(primc != nullptr); primc->SetHasBias(true); } else { - MS_LOG(EXCEPTION) << "Unsupported opType, " << type; + MS_LOG(ERROR) << "Unsupported opType, " << type; + return nullptr; } pre_node->set_abstract(abstr); const auto &prim = GetValueNode>(transform_node->input(0)); @@ -187,6 +189,7 @@ const void ConvTransformFusion::GenNewConvTensor(const FuncGraphPtr &func_graph, bias_data = new (std::nothrow) float[kernel_num]; if (bias_data == nullptr) { MS_LOG(ERROR) << "tensor_data is nullptr"; + delete[] bias_data; return; } }