converter format pass optimize

This commit is contained in:
zhengjun10 2020-08-26 09:42:24 +08:00
parent 9ab4f1237b
commit 1a12ad2615
13 changed files with 145 additions and 255 deletions

View File

@ -16,8 +16,8 @@ tracking
mtk_isface
mtk_landmark
mtk_pose_tuku
mtk_face_recognition_v1
mtk_2012_ATLANTA_10class_20190614_v41
# mtk_face_recognition_v1
# mtk_2012_ATLANTA_10class_20190614_v41
mtk_detect-deeper-halfdeeper-mbv1-lastearlySSD-shortcut-400-400_nopostprocess_simplified
detect-deeper-halfdeeper-mbv1-shortcut-400-400_nopostprocess_simplified
hiai_face_detect_rfb
@ -37,7 +37,7 @@ ml_hardware_pose
ml_bank_recog
2012_ATLANTA_10class_20190131_v4.0
mnet
recognition
# recognition
ml_face_landmark
model_hebing_3branch
hiai_cv_focusShootOCRModel_07
@ -48,9 +48,9 @@ hiai_cv_focusShootOCRModel_04
hiai_cv_focusShootOCRModel_06
hiai_cpu_face_hat
hiai_video_seg
hiai_semantic_seg
# hiai_semantic_seg
hiai_human_seg
hiai_face_recognition_1
# hiai_face_recognition_1
hiai_cpu_face_detect
hiai_cpu_face_attr
hiai_face_attr1

View File

@ -27,8 +27,8 @@
#include "tools/converter/legacy_optimizer/fusion/format_trans_fusion_pass.h"
#include "tools/converter/legacy_optimizer/fusion/format_trans_transpose_fusion_pass.h"
#include "tools/converter/legacy_optimizer/fusion/quant_cast_fusion_pass.h"
#include "tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h"
#include "tools/converter/legacy_optimizer/fusion/mul_add_fusion_pass.h"
#include "tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h"
#include "tools/converter/legacy_optimizer/graph/weight_format_hardcode_pass.h"
#include "tools/converter/legacy_optimizer/graph/weight_format_transform_pass.h"
#include "tools/converter/legacy_optimizer/graph/format_trans_pass.h"

View File

@ -7,7 +7,6 @@ add_library(fusion_mid OBJECT
${CMAKE_CURRENT_SOURCE_DIR}/batchnorm_fold_fusion_pass.cc
${CMAKE_CURRENT_SOURCE_DIR}/format_trans_fusion_pass.cc
${CMAKE_CURRENT_SOURCE_DIR}/format_trans_transpose_fusion_pass.cc
${CMAKE_CURRENT_SOURCE_DIR}/batchnorm_convert_scale_pass.cc
)
target_link_libraries(fusion_mid securec)

View File

@ -1,100 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
#define MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
#include <unordered_map>
#include <memory>
#include <string>
#include <utility>
#include "tools/converter/legacy_optimizer/fusion/fusion_pass.h"
#include "tools/common/graph_util.h"
namespace mindspore {
namespace lite {
struct BNWeightTensors {
TensorT *meanTensor = nullptr;
TensorT *varianceTensor = nullptr;
TensorT *scaleTensor = nullptr;
TensorT *biasTensor = nullptr;
};
class BatchNormConvertScalePass : public FusionPass {
public:
BatchNormConvertScalePass() = default;
~BatchNormConvertScalePass() = default;
STATUS DefinePattern() override;
STATUS DoFusion(MetaGraphT *graph, const std::string &patternName,
std::unordered_map<std::string, std::shared_ptr<Path>> &matchedPath) override;
STATUS Run(MetaGraphT *graph) override;
protected:
STATUS GetTransParam(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath);
// Get and check BNNode weight tensor
STATUS GetBnWeightTensors(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath, BNWeightTensors* bnWeightTensors);
STATUS GetBnEpsilon(MetaGraphT *graph);
STATUS FindNodes(MetaGraphT *graph, const std::unordered_map<std::string, std::shared_ptr<Path>> &matchedPath);
STATUS GenNewScaleTensor(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath);
STATUS ConvertBNToScale(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath);
CNodeT *inputNode = nullptr;
CNodeT *bnNode = nullptr;
std::string inputOpName = "Input";
std::string bnOpName = "BatchNorm";
std::string bnPatternName = "BnToScaleFusion";
uint32_t bnChannel = 0;
float eps = 0;
TensorT *bnMeanTensor = nullptr;
float *transScale = nullptr;
float *transBias = nullptr;
std::unique_ptr<TensorT> newScaleWeightTensor = nullptr;
std::unique_ptr<TensorT> newScaleBiasTensor = nullptr;
OpDefCopyer ScaleOpCopyer = [](CNodeT *inOpDef) -> std::unique_ptr<CNodeT> {
std::unique_ptr<CNodeT> newOpDef(new(std::nothrow) CNodeT);
if (newOpDef == nullptr) {
MS_LOG(ERROR) << "new OpDefT failed";
return nullptr;
}
newOpDef->name = inOpDef->name;
newOpDef->quantType = inOpDef->quantType;
newOpDef->primitive = std::make_unique<schema::PrimitiveT>();
newOpDef->primitive->value.type = schema::PrimitiveType_Scale;
auto scaleParam = new(std::nothrow) ScaleT;
if (scaleParam == nullptr) {
MS_LOG(ERROR) << "new scaleParam failed";
return nullptr;
}
auto inParam = inOpDef->primitive->value.AsScale();
MS_ASSERT(inParam != nullptr);
scaleParam->axis = inParam->axis;
newOpDef->primitive->value.value = scaleParam;
return std::move(newOpDef);
};
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H

View File

@ -8,4 +8,5 @@ add_library(graph_pass_mid OBJECT
${CMAKE_CURRENT_SOURCE_DIR}/weight_format_transform_pass.cc
${CMAKE_CURRENT_SOURCE_DIR}/topological_sort_pass.cc
${CMAKE_CURRENT_SOURCE_DIR}/unused_node_remove_pass.cc
${CMAKE_CURRENT_SOURCE_DIR}/batchnorm_convert_scale_pass.cc
)

View File

@ -14,7 +14,7 @@
* limitations under the License.
*/
#include "tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h"
#include "tools/converter/legacy_optimizer/graph/batchnorm_convert_scale_pass.h"
#include <cfloat>
#include <memory>
#include <string>
@ -44,123 +44,56 @@ constexpr const float EPS_DEFAULT_FLOAT = 1e-8;
constexpr const float POW_NUM = 0.5;
constexpr const int32_t NCHW_DIM_C = 1;
}
STATUS BatchNormConvertScalePass::Run(MetaGraphT *graph) { return FusionPass::Run(graph); }
STATUS BatchNormConvertScalePass::DefinePattern() {
// with preNode
{
auto inputOp = std::make_shared<PatternOp>();
inputOp->id = inputOpName;
inputOp->types = {schema::PrimitiveType_NONE};
inputOp->isPlaceHold = true;
auto bnOp = std::make_shared<PatternOp>();
bnOp->id = bnOpName;
bnOp->types = {schema::PrimitiveType_FusedBatchNorm, schema::PrimitiveType_BatchNorm};
bnOp->left = inputOp;
std::unique_ptr<FusionPattern> fusionPattern(new(std::nothrow) FusionPattern(bnPatternName));
if (fusionPattern == nullptr) {
MS_LOG(ERROR) << "new fusionPattern failed";
return RET_ERROR;
}
fusionPattern->AddPatternOp(inputOp);
fusionPattern->AddPatternOp(bnOp);
fusionPattern->Finish();
this->patterns.emplace_back(fusionPattern.release());
}
return RET_OK;
}
STATUS BatchNormConvertScalePass::DoFusion(MetaGraphT *graph, const std::string &patternName,
std::unordered_map<std::string, std::shared_ptr<Path>> &matchedPath) {
STATUS BatchNormConvertScalePass::Run(MetaGraphT *graph) {
MS_ASSERT(graph != nullptr);
if (patternName != bnPatternName) {
MS_LOG(ERROR) << "BatchNormConvertScale-Fusion match failed";
return RET_PARAM_INVALID;
}
auto status = FindNodes(graph, matchedPath);
if (status != RET_OK) {
MS_LOG(ERROR) << "FindNodes failed: " << status;
return status;
}
auto type = bnNode->primitive->value.type;
if (type != schema::PrimitiveType_FusedBatchNorm && type != schema::PrimitiveType_BatchNorm) {
return RET_OK;
}
auto bnPath = matchedPath.at(bnOpName);
status = GenNewScaleTensor(graph, bnPath);
if (status != RET_OK) {
MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status;
delete[] transScale;
delete[] transBias;
transScale = nullptr;
transBias = nullptr;
return status;
}
status = ConvertBNToScale(graph, bnPath);
if (status != RET_OK) {
MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status;
delete[] transScale;
delete[] transBias;
transScale = nullptr;
transBias = nullptr;
return status;
for (auto iter = graph->nodes.begin(); iter != graph->nodes.end(); iter++) {
auto &node = *iter;
auto type = node->primitive->value.type;
if (type != schema::PrimitiveType_FusedBatchNorm && type != schema::PrimitiveType_BatchNorm) {
continue;
}
auto status = GenNewScaleTensor(graph, node);
if (status != RET_OK) {
MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status;
return status;
}
status = ConvertBNToScale(graph, node);
if (status != RET_OK) {
MS_LOG(ERROR) << "GenNewScaleTensor failed: " << status;
return status;
}
}
delete[] transScale;
delete[] transBias;
transScale = nullptr;
transBias = nullptr;
return RET_OK;
}
STATUS BatchNormConvertScalePass::ConvertBNToScale(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath) {
auto scaleNode = std::unique_ptr<CNodeT>(new(std::nothrow) CNodeT);
if (scaleNode == nullptr) {
MS_LOG(ERROR) << "new TransNode failed";
return RET_ERROR;
}
scaleNode->name = bnNode->name;
scaleNode->primitive = std::make_unique<schema::PrimitiveT>();
if (scaleNode->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
scaleNode->primitive->value.type = schema::PrimitiveType_Scale;
STATUS BatchNormConvertScalePass::ConvertBNToScale(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode) {
MS_ASSERT(graph != nullptr);
MS_ASSERT(bnNode != nullptr);
bnNode->primitive->value.type = schema::PrimitiveType_Scale;
std::unique_ptr<ScaleT> scaleParam(new ScaleT());
if (scaleParam == nullptr) {
MS_LOG(ERROR) << "new transposeParam failed";
return RET_ERROR;
}
scaleParam->axis = NCHW_DIM_C;
scaleNode->primitive->value.value = scaleParam.release();
auto scaleIter = graph->nodes.begin() + bnPath->nodeIdx;
STATUS errorCode = RET_OK;
scaleIter =
InsertNode(graph, scaleIter, kBefore, 0, std::move(scaleNode), &errorCode, ScaleOpCopyer);
if (errorCode != RET_OK) {
MS_LOG(ERROR) << "InsertNode failed: %d"; // errorCode);
return errorCode;
}
auto &newScaleNode = *(scaleIter - 1);
bnNode->primitive->value.value = scaleParam.release();
auto input0 = bnNode->inputIndex.at(0);
bnNode->inputIndex.clear();
bnNode->inputIndex.push_back(input0);
graph->allTensors.emplace_back(std::move(newScaleWeightTensor));
auto weightTensorIdx = graph->allTensors.size() - 1;
graph->allTensors.emplace_back(std::move(newScaleBiasTensor));
auto biasTensorIdx = graph->allTensors.size() - 1;
newScaleNode->inputIndex.push_back(weightTensorIdx);
newScaleNode->inputIndex.push_back(biasTensorIdx);
// delete bn node
auto status = IsolateOneWayNode(graph, bnPath->nodeIdx + 1, true);
if (status != RET_OK) {
MS_LOG(ERROR) << "IsolateOneWayNode " << bnNode->name.c_str() << " failed, error: " << status;
return status;
}
bnNode->inputIndex.push_back(weightTensorIdx);
bnNode->inputIndex.push_back(biasTensorIdx);
return RET_OK;
}
STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath) {
STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode) {
MS_ASSERT(graph != nullptr);
GetTransParam(graph, bnPath);
MS_ASSERT(bnNode != nullptr);
GetTransParam(graph, bnNode);
newScaleWeightTensor = std::unique_ptr<TensorT>(new(std::nothrow) TensorT);
if (newScaleWeightTensor == nullptr) {
MS_LOG(ERROR) << "new weightTensor failed";
@ -175,8 +108,11 @@ STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std
auto ret = memcpy_s(newScaleWeightTensor->data.data(), weightShapeSize * sizeof(float), transScale,
weightShapeSize * sizeof(float));
if (ret != RET_OK) {
delete transScale;
MS_LOG(ERROR) << "memcpy error: " << ret;
delete[] transScale;
delete[] transBias;
transScale = nullptr;
transBias = nullptr;
return RET_ERROR;
}
@ -195,39 +131,25 @@ STATUS BatchNormConvertScalePass::GenNewScaleTensor(MetaGraphT *graph, const std
ret = memcpy_s(newScaleBiasTensor->data.data(), weightShapeSize * sizeof(float), transBias,
weightShapeSize * sizeof(float));
if (ret != RET_OK) {
delete transBias;
MS_LOG(ERROR) << "memcpy error: " << ret;
delete[] transScale;
delete[] transBias;
transScale = nullptr;
transBias = nullptr;
return RET_ERROR;
}
delete[] transScale;
delete[] transBias;
transScale = nullptr;
transBias = nullptr;
return RET_OK;
}
STATUS BatchNormConvertScalePass::FindNodes(MetaGraphT *graph,
const std::unordered_map<std::string, std::shared_ptr<Path>> &matchedPath) {
STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode) {
MS_ASSERT(graph != nullptr);
auto inputPath = matchedPath.at(inputOpName);
auto bnPath = matchedPath.at(bnOpName);
MS_ASSERT(inputPath != nullptr);
MS_ASSERT(bnPath != nullptr);
if (inputPath->subGraphIdx != bnPath->subGraphIdx) {
MS_LOG(ERROR) << "matched nodes should from same subGraph";
return RET_ERROR;
}
MS_ASSERT(graph->nodes.size() > inputPath->nodeIdx);
MS_ASSERT(graph->nodes.size() > bnPath->nodeIdx);
inputNode = graph->nodes.at(inputPath->nodeIdx).get();
bnNode = graph->nodes.at(bnPath->nodeIdx).get();
MS_ASSERT(inputNode != nullptr);
MS_ASSERT(bnNode != nullptr);
return RET_OK;
}
STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath) {
MS_ASSERT(graph != nullptr);
MS_ASSERT(bnPath != nullptr);
BNWeightTensors bnWeightTensors;
auto status = GetBnWeightTensors(graph, bnPath, &bnWeightTensors);
auto status = GetBnWeightTensors(graph, &bnWeightTensors, bnNode);
if (status != RET_OK) {
MS_LOG(ERROR) << "GetBnWeightTensors error";
return status;
@ -241,7 +163,7 @@ STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::sh
auto *varianceData = reinterpret_cast<float *>(varianceTensor->data.data());
eps = EPS_DEFAULT_FLOAT;
status = GetBnEpsilon(graph);
status = GetBnEpsilon(bnNode);
if (status != RET_OK) {
MS_LOG(ERROR) << "GetBnEpsilon failed";
return status;
@ -298,12 +220,11 @@ STATUS BatchNormConvertScalePass::GetTransParam(MetaGraphT *graph, const std::sh
// bias --1
// estimated_mean --2
// estimated_variance --3
STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, const std::shared_ptr<Path> &bnPath,
BNWeightTensors* bnWeightTensors) {
if (graph == nullptr || bnPath == nullptr) {
MS_LOG(ERROR) << "null pointer dereferencing.";
return RET_NULL_PTR;
}
STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, BNWeightTensors *bnWeightTensors,
const std::unique_ptr<CNodeT> &bnNode) {
MS_ASSERT(graph != nullptr);
MS_ASSERT(bnNode != nullptr);
MS_ASSERT(bnWeightTensors != nullptr);
MS_ASSERT(graph->allTensors.size() > bnNode->inputIndex.at(1));
auto bnWeightTensorIdxes = bnNode->inputIndex;
bnWeightTensorIdxes.erase(bnWeightTensorIdxes.begin());
@ -357,15 +278,9 @@ STATUS BatchNormConvertScalePass::GetBnWeightTensors(MetaGraphT *graph, const st
return RET_OK;
}
STATUS BatchNormConvertScalePass::GetBnEpsilon(MetaGraphT *graph) {
if (graph == nullptr) {
MS_LOG(ERROR) << "null pointer dereferencing.";
return RET_NULL_PTR;
}
if (bnNode == nullptr) {
MS_LOG(ERROR) << "null pointer dereferencing.";
return RET_NULL_PTR;
}
STATUS BatchNormConvertScalePass::GetBnEpsilon(const std::unique_ptr<CNodeT> &bnNode) {
MS_ASSERT(graph != nullptr);
MS_ASSERT(bnNode != nullptr);
if (bnNode->primitive->value.type == schema::PrimitiveType_FusedBatchNorm) {
eps = bnNode->primitive->value.AsFusedBatchNorm()->epsilon;
} else if (bnNode->primitive->value.type == schema::PrimitiveType_BatchNorm) {

View File

@ -0,0 +1,66 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
#define MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
#include <unordered_map>
#include <memory>
#include <string>
#include <utility>
#include "tools/common/graph_util.h"
#include "tools/converter/optimizer.h"
using mindspore::schema::TensorT;
namespace mindspore {
namespace lite {
struct BNWeightTensors {
schema::TensorT *meanTensor = nullptr;
TensorT *varianceTensor = nullptr;
TensorT *scaleTensor = nullptr;
TensorT *biasTensor = nullptr;
};
class BatchNormConvertScalePass : public GraphPass {
public:
BatchNormConvertScalePass() = default;
~BatchNormConvertScalePass() = default;
STATUS Run(MetaGraphT *graph) override;
protected:
STATUS GetTransParam(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode);
// Get and check BNNode weight tensor
STATUS GetBnWeightTensors(MetaGraphT *graph, BNWeightTensors *bnWeightTensors, const std::unique_ptr<CNodeT> &bnNode);
STATUS GetBnEpsilon(const std::unique_ptr<CNodeT> &bnNode);
STATUS GenNewScaleTensor(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode);
STATUS ConvertBNToScale(MetaGraphT *graph, const std::unique_ptr<CNodeT> &bnNode);
uint32_t bnChannel = 0;
float eps = 0;
TensorT *bnMeanTensor = nullptr;
float *transScale = nullptr;
float *transBias = nullptr;
std::unique_ptr<TensorT> newScaleWeightTensor = nullptr;
std::unique_ptr<TensorT> newScaleBiasTensor = nullptr;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H

View File

@ -121,7 +121,8 @@ STATUS EltwiseFormatTransPass::Run(schema::MetaGraphT *graph) {
MS_ASSERT(graph != nullptr);
for (auto iter = graph->nodes.begin(); iter != graph->nodes.end(); iter++) {
auto &node = *iter;
if (node->primitive->value.type != PrimitiveType_Eltwise) {
auto type = node->primitive->value.type;
if (type != PrimitiveType_Eltwise && type != PrimitiveType_Activation) {
continue;
}
auto node_name = node->name;

View File

@ -295,6 +295,9 @@ ParameterPtr AddNewBiasNode(float *bias_data, const FuncGraphPtr &func_graph, in
MS_ASSERT(param_value != nullptr);
param_value->set_tensor_addr(bias_data);
param_value->set_tensor_size(kernel_num * sizeof(float) / sizeof(uint8_t));
param_value->set_format(weight_tensor->format());
param_value->set_tensor_type(weight_tensor->tensor_type());
param_value->set_tensor_shape(shape);
bias_parameter->set_default_param(param_value);
return bias_parameter;
}

View File

@ -86,6 +86,7 @@ const ParameterPtr CreateNewParamter(const FuncGraphPtr &func_graph, Tensor *ten
MS_ASSERT(param_value != nullptr);
param_value->set_tensor_shape(shape);
param_value->set_tensor_type(type_id);
param_value->set_format(tensor->GetFormat());
if (tensor->Data() != nullptr) {
auto size = tensor->ElementsNum();
auto tensor_data = new (std::nothrow) float[size];

View File

@ -51,13 +51,13 @@ const AnfNodePtr ConvActivationFusion::Process(const FuncGraphPtr &func_graph, c
auto act_primitivec = utils::cast<std::shared_ptr<mindspore::lite::Activation>>(primitivec);
MS_ASSERT(act_primitivec != nullptr);
if (act_primitivec->GetType() != activation_type) {
return node;
return nullptr;
}
AnfNodePtr pre_node = act_node->input(1);
CheckIfAnfNodeIsNull(pre_node);
if (pre_node != nullptr && pre_node->isa<CNode>()) {
if (IsMultiOutputTensors(func_graph, pre_node)) {
return node;
return nullptr;
}
auto conv_node = pre_node->cast<CNodePtr>();
auto node_type = GetCNodeType(conv_node);
@ -80,9 +80,9 @@ const AnfNodePtr ConvActivationFusion::Process(const FuncGraphPtr &func_graph, c
return pre_node;
}
} else {
MS_LOG(EXCEPTION) << "conv activation pass match only conv2d or depthwise_conv2d ";
MS_LOG(ERROR) << "conv activation pass match only conv2d or depthwise_conv2d ";
}
}
return node;
return nullptr;
}
} // namespace mindspore::opt

View File

@ -179,7 +179,8 @@ const AnfNodePtr ConvBiasaddFusion::Process(const FuncGraphPtr &func_graph, cons
MS_ASSERT(primc != nullptr);
primc->SetHasBias(true);
} else {
MS_LOG(EXCEPTION) << "Unsupported opType, " << type;
MS_LOG(ERROR) << "Unsupported opType, " << type;
return nullptr;
}
return conv_node;
}

View File

@ -85,12 +85,13 @@ const AnfNodePtr ConvTransformFusion::Process(const FuncGraphPtr &func_graph, co
auto trans_scale = new (std::nothrow) float[kernel_nums];
if (trans_scale == nullptr) {
MS_LOG(ERROR) << "tensor_data is nullptr";
delete[] trans_scale;
return nullptr;
}
auto trans_bias = new (std::nothrow) float[kernel_nums];
if (trans_bias == nullptr) {
MS_LOG(ERROR) << "tensor_data is nullptr";
delete trans_scale;
delete[] trans_bias;
return nullptr;
}
GenTransParam(transform_node, kernel_nums, trans_scale, trans_bias);
@ -111,7 +112,8 @@ const AnfNodePtr ConvTransformFusion::Process(const FuncGraphPtr &func_graph, co
MS_ASSERT(primc != nullptr);
primc->SetHasBias(true);
} else {
MS_LOG(EXCEPTION) << "Unsupported opType, " << type;
MS_LOG(ERROR) << "Unsupported opType, " << type;
return nullptr;
}
pre_node->set_abstract(abstr);
const auto &prim = GetValueNode<std::shared_ptr<lite::PrimitiveC>>(transform_node->input(0));
@ -187,6 +189,7 @@ const void ConvTransformFusion::GenNewConvTensor(const FuncGraphPtr &func_graph,
bias_data = new (std::nothrow) float[kernel_num];
if (bias_data == nullptr) {
MS_LOG(ERROR) << "tensor_data is nullptr";
delete[] bias_data;
return;
}
}