forked from mindspore-Ecosystem/mindspore
86 lines
3.0 KiB
Python
86 lines
3.0 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import pytest
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore.ops import operations as P
|
|
from mindspore.nn import Cell
|
|
import mindspore as ms
|
|
|
|
|
|
def test_zip_operation_args_size():
|
|
"""
|
|
Feature: Check the size of inputs of ZipOperation.
|
|
Description: The inputs of ZipOperation must not be empty.
|
|
Expectation: The size of inputs of ZipOperation must be greater than 0.
|
|
"""
|
|
class AssignInZipLoop(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
|
|
self.conv2 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
|
|
self.params1 = self.conv1.trainable_params()
|
|
self.params2 = self.conv2.trainable_params()
|
|
|
|
def construct(self, x):
|
|
for p1, p2 in zip():
|
|
P.Assign()(p2, p1 + x)
|
|
|
|
out = 0
|
|
for p1, p2 in zip(self.params1, self.params2):
|
|
out = p1 + p2
|
|
|
|
return out
|
|
|
|
x = Tensor.from_numpy(np.ones([1], np.float32))
|
|
net = AssignInZipLoop()
|
|
with pytest.raises(Exception, match="The zip operator must have at least 1 argument"):
|
|
out = net(x)
|
|
assert np.all(out.asnumpy() == 1)
|
|
|
|
|
|
def test_zip_operation_args_type():
|
|
"""
|
|
Feature: Check the type of inputs of ZipOperation.
|
|
Description: Check whether all inputs in zip is sequeue.
|
|
Expectation: All inputs in zip must be sequeue.
|
|
"""
|
|
class AssignInZipLoop(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
|
|
self.conv2 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
|
|
self.params1 = self.conv1.trainable_params()
|
|
self.params2 = self.conv2.trainable_params()
|
|
self.param = Parameter(Tensor(5, ms.float32), name="param")
|
|
|
|
def construct(self, x):
|
|
for p1, p2 in zip(self.params1, self.params2, self.param):
|
|
P.Assign()(p2, p1 + x)
|
|
|
|
out = 0
|
|
for p1, p2 in zip(self.params1, self.params2):
|
|
out = p1 + p2
|
|
|
|
return out
|
|
|
|
x = Tensor.from_numpy(np.ones([1], np.float32))
|
|
net = AssignInZipLoop()
|
|
with pytest.raises(Exception, match="For 'zip', the all inputs must be list or tuple."):
|
|
out = net(x)
|
|
assert np.all(out.asnumpy() == 1)
|