mindspore/tests/syntax/simple_expression/test_zip_operation.py

86 lines
3.0 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor, Parameter
from mindspore.ops import operations as P
from mindspore.nn import Cell
import mindspore as ms
def test_zip_operation_args_size():
"""
Feature: Check the size of inputs of ZipOperation.
Description: The inputs of ZipOperation must not be empty.
Expectation: The size of inputs of ZipOperation must be greater than 0.
"""
class AssignInZipLoop(Cell):
def __init__(self):
super().__init__()
self.conv1 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
self.conv2 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
self.params1 = self.conv1.trainable_params()
self.params2 = self.conv2.trainable_params()
def construct(self, x):
for p1, p2 in zip():
P.Assign()(p2, p1 + x)
out = 0
for p1, p2 in zip(self.params1, self.params2):
out = p1 + p2
return out
x = Tensor.from_numpy(np.ones([1], np.float32))
net = AssignInZipLoop()
with pytest.raises(Exception, match="The zip operator must have at least 1 argument"):
out = net(x)
assert np.all(out.asnumpy() == 1)
def test_zip_operation_args_type():
"""
Feature: Check the type of inputs of ZipOperation.
Description: Check whether all inputs in zip is sequeue.
Expectation: All inputs in zip must be sequeue.
"""
class AssignInZipLoop(Cell):
def __init__(self):
super().__init__()
self.conv1 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
self.conv2 = ms.nn.Conv2d(3, 2, 1, weight_init="zero")
self.params1 = self.conv1.trainable_params()
self.params2 = self.conv2.trainable_params()
self.param = Parameter(Tensor(5, ms.float32), name="param")
def construct(self, x):
for p1, p2 in zip(self.params1, self.params2, self.param):
P.Assign()(p2, p1 + x)
out = 0
for p1, p2 in zip(self.params1, self.params2):
out = p1 + p2
return out
x = Tensor.from_numpy(np.ones([1], np.float32))
net = AssignInZipLoop()
with pytest.raises(Exception, match="For 'zip', the all inputs must be list or tuple."):
out = net(x)
assert np.all(out.asnumpy() == 1)