forked from mindspore-Ecosystem/mindspore
171 lines
5.3 KiB
Python
171 lines
5.3 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import pytest
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, nn, Parameter
|
|
from mindspore.nn import Cell
|
|
import mindspore as ms
|
|
|
|
|
|
def test_map_args_size():
|
|
"""
|
|
Feature: Check the size of inputs of map.
|
|
Description: The size of inputs of map must be greater than 1.
|
|
Expectation: The size of inputs of map must be greater than 1.
|
|
"""
|
|
class MapNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = nn.ReLU()
|
|
|
|
def mul(self, x=2, y=4):
|
|
return x * y
|
|
|
|
def construct(self, x):
|
|
if map(self.mul) == 8:
|
|
x = self.relu(x)
|
|
return x
|
|
input_np_x = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me_x = Tensor(input_np_x)
|
|
|
|
net = MapNet()
|
|
with pytest.raises(Exception, match="The Map operator must have at least two arguments."):
|
|
ret = net(input_me_x)
|
|
print("ret:", ret)
|
|
|
|
|
|
def test_map_args_type():
|
|
"""
|
|
Feature: Check the type of inputs of Map().
|
|
Description: The type of inputs of Map() must be list, tuple or class.
|
|
Expectation: The type of inputs of Map() must be list, tuple or class.
|
|
"""
|
|
class MapNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = nn.ReLU()
|
|
|
|
def mul(self, x=2, y=4):
|
|
return x * y
|
|
|
|
def construct(self, x):
|
|
if map(self.mul, 3, 4) == 8:
|
|
x = self.relu(x)
|
|
return x
|
|
input_np_x = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me_x = Tensor(input_np_x)
|
|
|
|
net = MapNet()
|
|
with pytest.raises(Exception, match="Map can only be applied to list, tuple and class"):
|
|
ret = net(input_me_x)
|
|
print("ret:", ret)
|
|
|
|
|
|
def test_map_args_full_make_list():
|
|
"""
|
|
Feature: Check the types of all inputs in Map.
|
|
Description: The types of all inputs in Map must be same.
|
|
Expectation: The types of all inputs in Map must be same.
|
|
"""
|
|
class MapNet(Cell):
|
|
def mul(self, x=2, y=4):
|
|
return x * y
|
|
|
|
def construct(self, x, y):
|
|
if map(self.mul, x, y) == [8]:
|
|
x = y
|
|
return x
|
|
|
|
input_me_x = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
|
input_me_y = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
|
|
|
net = MapNet()
|
|
with pytest.raises(Exception, match="The types of arguments in Map must be consistent"):
|
|
ret = net([input_me_x], (input_me_y))
|
|
print("ret:", ret)
|
|
|
|
|
|
def test_map_args_full_make_list_same_length():
|
|
"""
|
|
Feature: Check the length of list input Map.
|
|
Description: The list in Map should have same length.
|
|
Expectation: The list in Map should have same length.
|
|
"""
|
|
class MapNet(Cell):
|
|
def mul(self, x=2, y=4):
|
|
return x * y
|
|
|
|
def construct(self, x, y):
|
|
if map(self.mul, x, y) == [8]:
|
|
x = y
|
|
return x
|
|
|
|
input_me_x = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
|
input_me_y = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
|
|
|
net = MapNet()
|
|
with pytest.raises(Exception, match="For 'Map', the length of lists must be the same."):
|
|
ret = net([input_me_x], [input_me_y, input_me_y])
|
|
print("ret:", ret)
|
|
|
|
|
|
def test_map_args_full_make_tuple_same_length():
|
|
"""
|
|
Feature: Check the length of tuple input Map.
|
|
Description: The tuple in Map should have same length.
|
|
Expectation: The tuple in Map should have same length.
|
|
"""
|
|
class MapNet(Cell):
|
|
def mul(self, x=2, y=4):
|
|
return x * y
|
|
|
|
def construct(self, x, y):
|
|
if map(self.mul, x, y) == [8]:
|
|
x = y
|
|
return x
|
|
|
|
input_me_x = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
|
input_me_y = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
|
|
|
net = MapNet()
|
|
with pytest.raises(Exception, match="For 'Map', the length of tuples must be the same."):
|
|
ret = net((input_me_x, input_me_x), (input_me_y, input_me_y, input_me_y))
|
|
print("ret:", ret)
|
|
|
|
|
|
def test_map_param_cast():
|
|
"""
|
|
Feature: Check the ref type when insert auto cast.
|
|
Description: Check the ref type when insert auto cast.
|
|
Expectation: Check the ref type when insert auto cast.
|
|
"""
|
|
class MapNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.param = Parameter(Tensor(5, ms.float32), name="param_b")
|
|
|
|
def construct(self, x):
|
|
self.param = x
|
|
return self.param
|
|
|
|
input_me_x = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float64))
|
|
|
|
net = MapNet()
|
|
with pytest.raises(Exception, match="Data type conversion of 'Parameter' is not supported"):
|
|
ret = net(input_me_x)
|
|
print("ret:", ret)
|