mindspore/tests/st/control/test_if_by_if.py

69 lines
2.1 KiB
Python

import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.common.parameter import Parameter
from mindspore.nn import Cell
import mindspore.ops.operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_basic():
class SubNet(Cell):
def __init__(self):
super().__init__()
self.mul = P.Mul()
self.add = P.Add()
a = np.full((1,), 5, dtype=np.float32)
self.a = Parameter(Tensor(a), name='a')
b = np.full((1,), 4, dtype=np.float32)
self.b = Parameter(Tensor(b), name='b')
def construct(self, x):
if self.a > self.b:
x = self.mul(x, 1)
while self.b < 6:
x = self.add(x, x)
self.b += 1
return x
class Net(Cell):
def __init__(self):
super().__init__()
self.subnet = SubNet()
self.relu = P.ReLU()
self.add = P.Add()
a = np.full((1,), 5, dtype=np.float32)
self.a = Parameter(Tensor(a), name='a')
b = np.full((1,), 4, dtype=np.float32)
self.b = Parameter(Tensor(b), name='b')
c = np.full((1,), 7, dtype=np.float32)
self.c = Parameter(Tensor(c), name='c')
def func(self, x):
for _ in range(0, 2):
x = self.add(x, 0)
return x
def construct(self, x):
if self.a > self.b:
x = self.subnet(x)
else:
x = self.relu(x)
if self.a < self.c:
x = self.func(x)
else:
x = self.add(x, 2)
return x
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
net = Net()
out_ms = net(Tensor(input_np))
out_np = input_np * 4
assert np.allclose(out_ms.asnumpy(), out_np)