forked from mindspore-Ecosystem/mindspore
185 lines
5.9 KiB
Python
185 lines
5.9 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
""" test data sink"""
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import ops as P
|
|
import mindspore.dataset as ds
|
|
from mindspore import Tensor, context
|
|
from mindspore.train.data_sink import data_sink
|
|
|
|
|
|
def fixed_dataset_generator():
|
|
for _ in range(1, 10):
|
|
yield (
|
|
np.ones((3, 2048, 7, 7), dtype=np.float32),
|
|
np.ones((3, 1000), dtype=np.float32))
|
|
|
|
|
|
def dynamic_dataset_generator_cell():
|
|
for i in range(1, 10):
|
|
yield (
|
|
np.ones((i, 2048, 7, 7), dtype=np.float32),
|
|
np.ones((i, 1000), dtype=np.float32))
|
|
|
|
|
|
def dynamic_dataset_generator_func():
|
|
for i in range(1, 10):
|
|
yield (
|
|
np.ones((i), dtype=np.float32),
|
|
np.ones((i), dtype=np.float32))
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.dense = nn.Dense()
|
|
self.relu = nn.ReLU()
|
|
|
|
def construct(self, x):
|
|
x = self.dense(x)
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
|
|
class ReluReduceMeanDenseRelu(nn.Cell):
|
|
def __init__(self, kernel, bias, in_channel, num_class):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
self.mean = P.ReduceMean(keep_dims=False)
|
|
self.dense = nn.Dense(in_channel, num_class, kernel, bias)
|
|
|
|
def construct(self, x_):
|
|
x_ = self.relu(x_)
|
|
x_ = self.mean(x_, (2, 3))
|
|
x_ = self.dense(x_)
|
|
x_ = self.relu(x_)
|
|
return x_
|
|
|
|
|
|
def _train_func_sink(model, dataset, loss_fn, opt, input_signature=None):
|
|
def forward_fn(data, label):
|
|
logits = model(data)
|
|
loss = loss_fn(logits, label)
|
|
return loss, logits
|
|
|
|
grad_fn = P.value_and_grad(forward_fn, None, opt.parameters, has_aux=True)
|
|
model.set_train()
|
|
|
|
def train_step(data, label):
|
|
(loss, _), grads = grad_fn(data, label)
|
|
loss = P.depend(loss, opt(grads))
|
|
return loss
|
|
|
|
data_size = dataset.get_dataset_size()
|
|
epochs = 5
|
|
steps = data_size * epochs
|
|
sink_size = data_size
|
|
jit = ms.JitConfig()
|
|
|
|
sink_process = data_sink(train_step, dataset, sink_size=sink_size, jit_config=jit, input_signature=input_signature)
|
|
for _ in range(steps):
|
|
loss = sink_process()
|
|
print("loss: ", loss)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
|
|
def test_data_sink_fixed_shape(mode):
|
|
"""
|
|
Feature: mindspore.train.data_sink
|
|
Description: test data_sink with fixed-shape dataset.
|
|
Expectation: Success.
|
|
"""
|
|
context.set_context(mode=mode)
|
|
weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
|
|
bias = Tensor(np.ones((1000,)).astype(np.float32))
|
|
network = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
|
|
|
|
dataset = ds.GeneratorDataset(
|
|
fixed_dataset_generator, ["data", "label"])
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
|
opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
|
|
|
_train_func_sink(network, dataset, loss_fn, opt)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
|
|
@pytest.mark.skip(reason='Have ops issue, not support yet')
|
|
def test_data_sink_dynamic_shape(mode):
|
|
"""
|
|
Feature: mindspore.train.data_sink
|
|
Description: test data_sink with dynamic shape dataset.
|
|
Expectation: Success.
|
|
"""
|
|
context.set_context(mode=mode)
|
|
weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
|
|
bias = Tensor(np.ones((1000,)).astype(np.float32))
|
|
|
|
network = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
|
|
|
|
dataset = ds.GeneratorDataset(dynamic_dataset_generator_cell, ["data", "label"])
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
|
opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
|
|
|
input_signature = (Tensor(shape=[None, 2048, 7, 7], dtype=ms.float32),
|
|
Tensor(shape=[None, 1000], dtype=ms.float32))
|
|
_train_func_sink(network, dataset, loss_fn, opt, input_signature)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
|
|
def test_function_data_sink_dynamic_shape(mode):
|
|
"""
|
|
Feature: mindspore.train.data_sink
|
|
Description: test data_sink with dynamic shape dataset.
|
|
Expectation: Success.
|
|
"""
|
|
context.set_context(mode=mode)
|
|
dataset = ds.GeneratorDataset(dynamic_dataset_generator_func, ["data", "label"])
|
|
|
|
def func_net(x, y):
|
|
out = x + y
|
|
return out
|
|
|
|
data_size = dataset.get_dataset_size()
|
|
epochs = 5
|
|
steps = data_size * epochs
|
|
sink_size = data_size
|
|
jit = ms.JitConfig()
|
|
|
|
input_signature = (Tensor(shape=[None,], dtype=ms.float32), Tensor(shape=[None,], dtype=ms.float32))
|
|
|
|
sink_process = data_sink(func_net, dataset, sink_size=sink_size, jit_config=jit, input_signature=input_signature)
|
|
for _ in range(steps):
|
|
out = sink_process()
|
|
print("out: ", out)
|