mindspore/tests/st/train/test_data_sink.py

185 lines
5.9 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test data sink"""
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import ops as P
import mindspore.dataset as ds
from mindspore import Tensor, context
from mindspore.train.data_sink import data_sink
def fixed_dataset_generator():
for _ in range(1, 10):
yield (
np.ones((3, 2048, 7, 7), dtype=np.float32),
np.ones((3, 1000), dtype=np.float32))
def dynamic_dataset_generator_cell():
for i in range(1, 10):
yield (
np.ones((i, 2048, 7, 7), dtype=np.float32),
np.ones((i, 1000), dtype=np.float32))
def dynamic_dataset_generator_func():
for i in range(1, 10):
yield (
np.ones((i), dtype=np.float32),
np.ones((i), dtype=np.float32))
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.dense = nn.Dense()
self.relu = nn.ReLU()
def construct(self, x):
x = self.dense(x)
x = self.relu(x)
return x
class ReluReduceMeanDenseRelu(nn.Cell):
def __init__(self, kernel, bias, in_channel, num_class):
super().__init__()
self.relu = P.ReLU()
self.mean = P.ReduceMean(keep_dims=False)
self.dense = nn.Dense(in_channel, num_class, kernel, bias)
def construct(self, x_):
x_ = self.relu(x_)
x_ = self.mean(x_, (2, 3))
x_ = self.dense(x_)
x_ = self.relu(x_)
return x_
def _train_func_sink(model, dataset, loss_fn, opt, input_signature=None):
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
grad_fn = P.value_and_grad(forward_fn, None, opt.parameters, has_aux=True)
model.set_train()
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
loss = P.depend(loss, opt(grads))
return loss
data_size = dataset.get_dataset_size()
epochs = 5
steps = data_size * epochs
sink_size = data_size
jit = ms.JitConfig()
sink_process = data_sink(train_step, dataset, sink_size=sink_size, jit_config=jit, input_signature=input_signature)
for _ in range(steps):
loss = sink_process()
print("loss: ", loss)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_data_sink_fixed_shape(mode):
"""
Feature: mindspore.train.data_sink
Description: test data_sink with fixed-shape dataset.
Expectation: Success.
"""
context.set_context(mode=mode)
weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
bias = Tensor(np.ones((1000,)).astype(np.float32))
network = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
dataset = ds.GeneratorDataset(
fixed_dataset_generator, ["data", "label"])
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
_train_func_sink(network, dataset, loss_fn, opt)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.skip(reason='Have ops issue, not support yet')
def test_data_sink_dynamic_shape(mode):
"""
Feature: mindspore.train.data_sink
Description: test data_sink with dynamic shape dataset.
Expectation: Success.
"""
context.set_context(mode=mode)
weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
bias = Tensor(np.ones((1000,)).astype(np.float32))
network = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
dataset = ds.GeneratorDataset(dynamic_dataset_generator_cell, ["data", "label"])
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
input_signature = (Tensor(shape=[None, 2048, 7, 7], dtype=ms.float32),
Tensor(shape=[None, 1000], dtype=ms.float32))
_train_func_sink(network, dataset, loss_fn, opt, input_signature)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_function_data_sink_dynamic_shape(mode):
"""
Feature: mindspore.train.data_sink
Description: test data_sink with dynamic shape dataset.
Expectation: Success.
"""
context.set_context(mode=mode)
dataset = ds.GeneratorDataset(dynamic_dataset_generator_func, ["data", "label"])
def func_net(x, y):
out = x + y
return out
data_size = dataset.get_dataset_size()
epochs = 5
steps = data_size * epochs
sink_size = data_size
jit = ms.JitConfig()
input_signature = (Tensor(shape=[None,], dtype=ms.float32), Tensor(shape=[None,], dtype=ms.float32))
sink_process = data_sink(func_net, dataset, sink_size=sink_size, jit_config=jit, input_signature=input_signature)
for _ in range(steps):
out = sink_process()
print("out: ", out)