mindspore/tests/st/tensor/test_topk.py

71 lines
2.6 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
class Net(nn.Cell):
# pylint: disable=redefined-builtin
def construct(self, input_x, k, dim=None, largest=True, sorted=True):
output = input_x.topk(k, dim=dim, largest=largest, sorted=sorted)
return output
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_topk_normal(mode):
"""
Feature: top_k
Description: Verify the result of topk
Expectation: success
"""
ms.set_context(mode=mode)
net = Net()
x = ms.Tensor([[0.5368, 0.2447, 0.4302, 0.9673],
[0.4388, 0.6525, 0.4685, 0.1868],
[0.3563, 0.5152, 0.9675, 0.8230]], dtype=ms.float32)
output = net(x, 2, dim=1)
output0 = output[0]
output1 = output[1]
expect_output0 = np.array([[0.9673, 0.5368],
[0.6525, 0.4685],
[0.9675, 0.823]])
expect_output1 = np.array([[3, 0],
[1, 2],
[2, 3]])
output2 = net(x, 2, dim=1, largest=False)
output2_0 = output2[0]
output2_1 = output2[1]
expect_output2_0 = np.array([[2.44700000e-01, 4.30200011e-01],
[1.86800003e-01, 4.38800007e-01],
[3.56299996e-01, 5.15200019e-01]])
expect_output2_1 = np.array([[1, 2],
[3, 0],
[0, 1]])
assert np.allclose(output0.asnumpy(), expect_output0)
assert np.allclose(output1.asnumpy(), expect_output1)
assert np.allclose(output2_0.asnumpy(), expect_output2_0)
assert np.allclose(output2_1.asnumpy(), expect_output2_1)