mindspore/tests/st/tensor/test_adjoint.py

71 lines
2.3 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
class Net(nn.Cell):
def construct(self, x):
return x.adjoint()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tensor_adjoint(mode):
"""
Feature: tensor.adjoint
Description: Verify the result of adjoint
Expectation: success, however, when running on Ascend, transpose does not support Complex numbers.
"""
ms.set_context(mode=mode)
x = Tensor(np.array([[0., 1.], [2., 3.]]), ms.float32)
net = Net()
output = net(x)
expect_output = np.array([[0., 2.],
[1., 3.]])
assert np.allclose(output.asnumpy(), expect_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tensor_adjoint_complex(mode):
"""
Feature: tensor.adjoint
Description: Verify the result of adjoint
Expectation: success.
"""
ms.set_context(mode=mode)
x = Tensor(np.array([[0. + 0.j, 1. + 1.j], [2. + 2.j, 3. + 3.j]]), ms.complex128)
net = Net()
output = net(x)
expect_output = np.array([[0. - 0.j, 2. - 2.j],
[1. - 1.j, 3. - 3.j]])
assert np.allclose(output.asnumpy(), expect_output)