mindspore/tests/st/numpy_native/test_math_ops.py

2684 lines
73 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""unit tests for numpy math operations"""
import pytest
import numpy as onp
import mindspore.numpy as mnp
from mindspore import context
from mindspore.common.dtype import dtype_to_nptype
from .utils import rand_int, rand_bool, run_binop_test, run_unary_test, run_multi_test, \
run_single_test, match_res, match_array, match_meta, match_all_arrays, to_tensor
context.set_context(mode=context.PYNATIVE_MODE)
class Cases():
def __init__(self):
self.arrs = [
rand_int(2),
rand_int(2, 3),
rand_int(2, 3, 4),
]
# scalars expanded across the 0th dimension
self.scalars = [
rand_int(),
rand_int(1),
rand_int(1, 1),
]
# arrays of the same size expanded across the 0th dimension
self.expanded_arrs = [
rand_int(2, 3),
rand_int(1, 2, 3),
rand_int(1, 1, 2, 3),
]
# arrays with last dimension aligned
self.aligned_arrs = [
rand_int(2, 3),
rand_int(1, 4, 3),
rand_int(5, 1, 2, 3),
rand_int(4, 2, 1, 1, 3),
]
# arrays which can be broadcast
self.broadcastables = [
rand_int(5),
rand_int(6, 1),
rand_int(7, 1, 5),
]
# boolean arrays which can be broadcast
self.bool_broadcastables = [
rand_bool(),
rand_bool(1),
rand_bool(5),
rand_bool(6, 1),
rand_bool(7, 1, 5),
rand_bool(8, 1, 6, 1),
]
# core dimension 0 is matched for each
# pair of array[i] and array[i + 1]
self.core_broadcastables = [
rand_int(3),
rand_int(3),
rand_int(6),
rand_int(6, 4),
rand_int(5, 2),
rand_int(2),
rand_int(2, 9),
rand_int(9, 8),
rand_int(6),
rand_int(2, 6, 5),
rand_int(9, 2, 7),
rand_int(7),
rand_int(5, 2, 4),
rand_int(6, 1, 4, 9),
rand_int(7, 1, 5, 3, 2),
rand_int(8, 1, 6, 1, 2, 9),
]
# arrays with dimensions of size 1
self.nested_arrs = [
rand_int(1),
rand_int(1, 2),
rand_int(3, 1, 8),
rand_int(1, 3, 9, 1),
]
test_case = Cases()
def mnp_add(x1, x2):
return mnp.add(x1, x2)
def onp_add(x1, x2):
return onp.add(x1, x2)
def mnp_subtract(x1, x2):
return mnp.subtract(x1, x2)
def onp_subtract(x1, x2):
return onp.subtract(x1, x2)
def mnp_mutiply(x1, x2):
return mnp.multiply(x1, x2)
def onp_multiply(x1, x2):
return onp.multiply(x1, x2)
def mnp_divide(x1, x2):
return mnp.divide(x1, x2)
def onp_divide(x1, x2):
return onp.divide(x1, x2)
def mnp_true_divide(x1, x2):
return mnp.true_divide(x1, x2)
def onp_true_divide(x1, x2):
return onp.true_divide(x1, x2)
def mnp_power(x1, x2):
return mnp.power(x1, x2)
def onp_power(x1, x2):
return onp.power(x1, x2)
def mnp_float_power(x1, x2):
return mnp.float_power(x1, x2)
def onp_float_power(x1, x2):
return onp.float_power(x1, x2)
def mnp_minimum(a, b):
return mnp.minimum(a, b)
def onp_minimum(a, b):
return onp.minimum(a, b)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_add():
run_binop_test(mnp_add, onp_add, test_case)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_subtract():
run_binop_test(mnp_subtract, onp_subtract, test_case)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_multiply():
run_binop_test(mnp_mutiply, onp_multiply, test_case)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_divide():
run_binop_test(mnp_divide, onp_divide, test_case)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_true_divide():
run_binop_test(mnp_true_divide, onp_true_divide, test_case)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_power():
run_binop_test(mnp_power, onp_power, test_case, error=1e-5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_float_power():
run_binop_test(mnp_float_power, onp_float_power, test_case, error=1e-5)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_minimum():
run_binop_test(mnp_minimum, onp_minimum, test_case)
x = onp.random.randint(-10, 10, 20).astype(onp.float32)
y = onp.random.randint(-10, 10, 20).astype(onp.float32)
x[onp.random.randint(0, 10, 3)] = onp.nan
y[onp.random.randint(0, 10, 3)] = onp.nan
x[onp.random.randint(0, 10, 3)] = onp.NINF
y[onp.random.randint(0, 10, 3)] = onp.NINF
x[onp.random.randint(0, 10, 3)] = onp.PINF
y[onp.random.randint(0, 10, 3)] = onp.PINF
match_res(mnp_minimum, onp_minimum, x, y)
match_res(mnp_minimum, onp_minimum, y, x)
def mnp_tensordot(x, y):
a = mnp.tensordot(x, y)
b = mnp.tensordot(x, y, axes=0)
c = mnp.tensordot(x, y, axes=1)
d = mnp.tensordot(x, y, axes=2)
e = mnp.tensordot(x, y, axes=(3, 0))
f = mnp.tensordot(x, y, axes=[2, 1])
g = mnp.tensordot(x, y, axes=((2, 3), (0, 1)))
h = mnp.tensordot(x, y, axes=[[3, 2], [1, 0]])
return a, b, c, d, e, f, g, h
def onp_tensordot(x, y):
a = onp.tensordot(x, y)
b = onp.tensordot(x, y, axes=0)
c = onp.tensordot(x, y, axes=1)
d = onp.tensordot(x, y, axes=2)
e = onp.tensordot(x, y, axes=(3, 0))
f = onp.tensordot(x, y, axes=[2, 1])
g = onp.tensordot(x, y, axes=((2, 3), (0, 1)))
h = onp.tensordot(x, y, axes=[[3, 2], [1, 0]])
return a, b, c, d, e, f, g, h
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tensordot():
x = rand_int(4, 2, 7, 7)
y = rand_int(7, 7, 6)
run_multi_test(mnp_tensordot, onp_tensordot, (x, y))
def mnp_std(x):
a = mnp.std(x)
b = mnp.std(x, axis=None)
c = mnp.std(x, axis=0)
d = mnp.std(x, axis=1)
e = mnp.std(x, axis=(-1, 1))
f = mnp.std(x, axis=(0, 1, 2))
g = mnp.std(x, axis=None, ddof=1, keepdims=True)
h = mnp.std(x, axis=0, ddof=1, keepdims=True)
i = mnp.std(x, axis=(2), ddof=1, keepdims=True)
return a, b, c, d, e, f, g, h, i
def onp_std(x):
a = onp.std(x)
b = onp.std(x, axis=None)
c = onp.std(x, axis=0)
d = onp.std(x, axis=1)
e = onp.std(x, axis=(-1, 1))
f = onp.std(x, axis=(0, 1, 2))
g = onp.std(x, axis=None, ddof=1, keepdims=True)
h = onp.std(x, axis=0, ddof=1, keepdims=True)
i = onp.std(x, axis=(2), ddof=1, keepdims=True)
return a, b, c, d, e, f, g, h, i
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_std():
arr1 = rand_int(2, 3, 4, 5)
arr2 = rand_int(4, 5, 4, 3, 3)
run_single_test(mnp_std, onp_std, arr1, error=1e-5)
run_single_test(mnp_std, onp_std, arr2, error=1e-5)
def mnp_nanstd(x):
a = mnp.nanstd(x)
b = mnp.nanstd(x, axis=None)
c = mnp.nanstd(x, axis=0)
d = mnp.nanstd(x, axis=1)
e = mnp.nanstd(x, axis=(-1, 1))
f = mnp.nanstd(x, axis=(0, 1, 2))
g = mnp.nanstd(x, axis=None, ddof=1, keepdims=True)
h = mnp.nanstd(x, axis=0, ddof=1, keepdims=True)
i = mnp.nanstd(x, axis=(2), ddof=1, keepdims=True)
return a, b, c, d, e, f, g, h, i
def onp_nanstd(x):
a = onp.nanstd(x)
b = onp.nanstd(x, axis=None)
c = onp.nanstd(x, axis=0)
d = onp.nanstd(x, axis=1)
e = onp.nanstd(x, axis=(-1, 1))
f = onp.nanstd(x, axis=(0, 1, 2))
g = onp.nanstd(x, axis=None, ddof=1, keepdims=True)
h = onp.nanstd(x, axis=0, ddof=1, keepdims=True)
i = onp.nanstd(x, axis=(2), ddof=1, keepdims=True)
return a, b, c, d, e, f, g, h, i
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nanstd():
arr1 = rand_int(2, 3, 4, 5)
arr1[0][2][1][3] = onp.nan
arr1[1][0][2][4] = onp.nan
arr1[1][1][1][1] = onp.nan
arr2 = rand_int(4, 5, 4, 3, 3)
arr2[3][1][2][1][0] = onp.nan
arr2[1][1][1][1][1] = onp.nan
arr2[0][4][3][0][2] = onp.nan
run_single_test(mnp_nanstd, onp_nanstd, arr1, error=1e-5)
run_single_test(mnp_nanstd, onp_nanstd, arr2, error=1e-5)
match_res(mnp.nanstd, onp.nanstd, rand_int())
def mnp_var(x):
a = mnp.var(x)
b = mnp.var(x, axis=0)
c = mnp.var(x, axis=(0))
d = mnp.var(x, axis=(0, 1, 2))
e = mnp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
return a, b, c, d, e
def onp_var(x):
a = onp.var(x)
b = onp.var(x, axis=0)
c = onp.var(x, axis=(0))
d = onp.var(x, axis=(0, 1, 2))
e = onp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
return a, b, c, d, e
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_var():
arr1 = rand_int(2, 3, 4, 5)
arr2 = rand_int(4, 5, 4, 3, 3)
run_single_test(mnp_var, onp_var, arr1, error=1e-5)
run_single_test(mnp_var, onp_var, arr2, error=1e-5)
def mnp_nanvar(x):
a = mnp.var(x)
b = mnp.var(x, axis=0)
c = mnp.var(x, axis=(0))
d = mnp.var(x, axis=(0, 1, 2))
e = mnp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
return a, b, c, d, e
def onp_nanvar(x):
a = onp.var(x)
b = onp.var(x, axis=0)
c = onp.var(x, axis=(0))
d = onp.var(x, axis=(0, 1, 2))
e = onp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
return a, b, c, d, e
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nanvar():
arr1 = rand_int(2, 3, 4, 5)
arr1[0][2][1][3] = onp.nan
arr1[1][0][2][4] = onp.nan
arr1[1][1][1][1] = onp.nan
arr2 = rand_int(4, 5, 4, 3, 3)
arr2[3][1][2][1][0] = onp.nan
arr2[1][1][1][1][1] = onp.nan
arr2[0][4][3][0][2] = onp.nan
run_single_test(mnp_nanvar, onp_nanvar, arr1, error=1e-5)
run_single_test(mnp_nanvar, onp_nanvar, arr2, error=1e-5)
match_res(mnp.nanvar, onp.nanvar, rand_int())
def mnp_average(x):
a = mnp.average(x)
b = mnp.average(x, axis=None)
c = mnp.average(x, axis=0)
d = mnp.average(x, axis=1)
e = mnp.average(x, axis=(-2, 1))
f = mnp.average(x, axis=(0, 1, 2, 3))
g = mnp.average(x, axis=None, weights=x)
h = mnp.average(x, axis=0, weights=x)
i = mnp.average(x, axis=(1, 2, 3), weights=x)
return a, b, c, d, e, f, g, h, i
def onp_average(x):
a = onp.average(x)
b = onp.average(x, axis=None)
c = onp.average(x, axis=0)
d = onp.average(x, axis=1)
e = onp.average(x, axis=(-2, 1))
f = onp.average(x, axis=(0, 1, 2, 3))
g = onp.average(x, axis=None, weights=x)
h = onp.average(x, axis=0, weights=x)
i = onp.average(x, axis=(1, 2, 3), weights=x)
return a, b, c, d, e, f, g, h, i
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_average():
arr1 = rand_int(2, 3, 4, 5)
arr2 = rand_int(4, 5, 1, 3, 1)
run_single_test(mnp_average, onp_average, arr1, error=1e-5)
run_single_test(mnp_average, onp_average, arr2, error=1e-5)
def mnp_count_nonzero(x):
a = mnp.count_nonzero(x)
b = mnp.count_nonzero(x, axis=None)
c = mnp.count_nonzero(x, axis=0)
d = mnp.count_nonzero(x, axis=1)
e = mnp.count_nonzero(x, axis=(-2, 1))
f = mnp.count_nonzero(x, axis=(0, 1, 2, 3))
return a, b, c, d, e, f
def onp_count_nonzero(x):
a = onp.count_nonzero(x)
b = onp.count_nonzero(x, axis=None)
c = onp.count_nonzero(x, axis=0)
d = onp.count_nonzero(x, axis=1)
e = onp.count_nonzero(x, axis=(-2, 1))
f = onp.count_nonzero(x, axis=(0, 1, 2, 3))
return a, b, c, d, e, f
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_count_nonzero():
# minus 5 to make some values below zero
arr1 = rand_int(2, 3, 4, 5) - 5
arr2 = rand_int(4, 5, 4, 3, 3) - 5
run_single_test(mnp_count_nonzero, onp_count_nonzero, arr1)
run_single_test(mnp_count_nonzero, onp_count_nonzero, arr2)
def mnp_inner(a, b):
return mnp.inner(a, b)
def onp_inner(a, b):
return onp.inner(a, b)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_inner():
for arr1 in test_case.aligned_arrs:
for arr2 in test_case.aligned_arrs:
match_res(mnp_inner, onp_inner, arr1, arr2)
for scalar1 in test_case.scalars:
for scalar2 in test_case.scalars:
match_res(mnp_inner, onp_inner,
scalar1, scalar2)
def mnp_dot(a, b):
return mnp.dot(a, b)
def onp_dot(a, b):
return onp.dot(a, b)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_dot():
# test case (1D, 1D)
match_res(mnp_dot, onp_dot, rand_int(3), rand_int(3))
# test case (2D, 2D)
match_res(mnp_dot, onp_dot, rand_int(4, 7), rand_int(7, 2))
# test case (0D, _) (_, 0D)
match_res(mnp_dot, onp_dot, rand_int(), rand_int(1, 9, 3))
match_res(mnp_dot, onp_dot, rand_int(8, 5, 6, 3), rand_int())
# test case (ND, 1D)
match_res(mnp_dot, onp_dot, rand_int(2, 4, 5), rand_int(5))
# test case (ND, MD)
match_res(mnp_dot, onp_dot, rand_int(5, 4, 1, 8), rand_int(8, 3))
for i in range(8):
match_res(mnp_dot, onp_dot,
test_case.core_broadcastables[2*i], test_case.core_broadcastables[2*i + 1])
def mnp_outer(a, b):
return mnp.outer(a, b)
def onp_outer(a, b):
return onp.outer(a, b)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_outer():
run_binop_test(mnp_outer, onp_outer, test_case)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_type_promotion():
arr = rand_int(2, 3)
onp_res = onp_add(arr, arr)
a = to_tensor(arr, dtype=mnp.float16)
b = to_tensor(arr, dtype=mnp.float32)
c = to_tensor(arr, dtype=mnp.int32)
match_array(mnp_add(a, b).asnumpy(), onp_res)
match_array(mnp_add(b, c).asnumpy(), onp_res)
def mnp_absolute(x):
return mnp.absolute(x)
def onp_absolute(x):
return onp.absolute(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_absolute():
arr = rand_int(2, 3)
a = to_tensor(arr, dtype=mnp.float16)
b = to_tensor(arr, dtype=mnp.float32)
c = to_tensor(arr, dtype=mnp.uint8)
d = to_tensor(arr, dtype=mnp.bool_)
match_array(mnp_absolute(a).asnumpy(), onp_absolute(a.asnumpy()))
match_array(mnp_absolute(b).asnumpy(), onp_absolute(b.asnumpy()))
match_array(mnp_absolute(c).asnumpy(), onp_absolute(c.asnumpy()))
match_array(mnp_absolute(d).asnumpy(), onp_absolute(d.asnumpy()))
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_deg2rad_rad2deg():
arrs = [rand_int(2, 3), rand_int(1, 2, 4), rand_int(2, 4)]
for arr in arrs:
match_res(mnp.deg2rad, onp.deg2rad, arr)
match_res(mnp.rad2deg, onp.rad2deg, arr)
def mnp_ptp(x):
a = mnp.ptp(x)
b = mnp.ptp(x, keepdims=True)
c = mnp.ptp(x, axis=(0, 1))
d = mnp.ptp(x, axis=-1)
return a, b, c, d
def onp_ptp(x):
a = onp.ptp(x)
b = onp.ptp(x, keepdims=True)
c = onp.ptp(x, axis=(0, 1))
d = onp.ptp(x, axis=-1)
return a, b, c, d
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ptp():
arrs = [rand_int(2, 3), rand_int(1, 2, 4), rand_int(2, 4)]
for arr in arrs:
match_res(mnp_ptp, onp_ptp, arr)
def mnp_add_dtype(x1, x2):
return mnp.add(x1, x2, dtype=mnp.float32)
def onp_add_dtype(x1, x2):
return onp.add(x1, x2, dtype=onp.float32)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_add_dtype():
x1 = rand_int(2, 3).astype('int32')
x2 = rand_int(2, 3).astype('int32')
arrs = (x1, x2)
mnp_arrs = map(to_tensor, arrs)
mnp_res = mnp_add_dtype(*mnp_arrs)
onp_res = onp_add_dtype(*arrs)
for actual, expected in zip(mnp_res, onp_res):
assert actual.asnumpy().dtype == expected.dtype
def mnp_matmul(x1, x2):
return mnp.matmul(x1, x2)
def onp_matmul(x1, x2):
return onp.matmul(x1, x2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_matmul():
for scalar1 in test_case.scalars[1:]:
for scalar2 in test_case.scalars[1:]:
match_res(mnp_matmul, onp_matmul,
scalar1, scalar2)
for i in range(8):
match_res(mnp_matmul, onp_matmul,
test_case.core_broadcastables[2*i],
test_case.core_broadcastables[2*i + 1])
def mnp_square(x):
return mnp.square(x)
def onp_square(x):
return onp.square(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_square():
run_unary_test(mnp_square, onp_square, test_case)
def mnp_sqrt(x):
return mnp.sqrt(x)
def onp_sqrt(x):
return onp.sqrt(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_sqrt():
run_unary_test(mnp_sqrt, onp_sqrt, test_case)
def mnp_reciprocal(x):
return mnp.reciprocal(x)
def onp_reciprocal(x):
return onp.reciprocal(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_reciprocal():
run_unary_test(mnp_reciprocal, onp_reciprocal, test_case)
def mnp_log(x):
return mnp.log(x)
def onp_log(x):
return onp.log(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_log():
run_unary_test(mnp.log, onp.log, test_case, error=1e-5)
def mnp_log1p(x):
return mnp.log1p(x)
def onp_log1p(x):
return onp.log1p(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_log1p():
run_unary_test(mnp_log1p, onp_log1p, test_case, error=1e-5)
def mnp_logaddexp(x1, x2):
return mnp.logaddexp(x1, x2)
def onp_logaddexp(x1, x2):
return onp.logaddexp(x1, x2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_logaddexp():
test_cases = [
onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
for _, x1 in enumerate(test_cases):
for _, x2 in enumerate(test_cases):
expected = onp_logaddexp(x1, x2)
actual = mnp_logaddexp(to_tensor(x1), to_tensor(x2))
onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
decimal=2)
def mnp_log2(x):
return mnp.log2(x)
def onp_log2(x):
return onp.log2(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_log2():
run_unary_test(mnp_log2, onp_log2, test_case, error=1e-5)
def mnp_logaddexp2(x1, x2):
return mnp.logaddexp2(x1, x2)
def onp_logaddexp2(x1, x2):
return onp.logaddexp2(x1, x2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_logaddexp2():
test_cases = [
onp.random.randint(1, 5, (2)).astype('float16'),
onp.random.randint(1, 5, (3, 2)).astype('float16'),
onp.random.randint(1, 5, (1, 3, 2)).astype('float16'),
onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
for _, x1 in enumerate(test_cases):
for _, x2 in enumerate(test_cases):
expected = onp_logaddexp2(x1, x2)
actual = mnp_logaddexp2(to_tensor(x1), to_tensor(x2))
onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
decimal=2)
def mnp_log10(x):
return mnp.log10(x)
def onp_log10(x):
return onp.log10(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_log10():
run_unary_test(mnp_log10, onp_log10, test_case, error=1e-5)
def mnp_maximum(x1, x2):
return mnp.maximum(x1, x2)
def onp_maximum(x1, x2):
return onp.maximum(x1, x2)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_maximum():
run_binop_test(mnp_maximum, onp_maximum, test_case)
x = onp.random.randint(-10, 10, 20).astype(onp.float32)
y = onp.random.randint(-10, 10, 20).astype(onp.float32)
x[onp.random.randint(0, 10, 3)] = onp.nan
y[onp.random.randint(0, 10, 3)] = onp.nan
x[onp.random.randint(0, 10, 3)] = onp.NINF
y[onp.random.randint(0, 10, 3)] = onp.NINF
x[onp.random.randint(0, 10, 3)] = onp.PINF
y[onp.random.randint(0, 10, 3)] = onp.PINF
match_res(mnp_maximum, onp_maximum, x, y)
match_res(mnp_maximum, onp_maximum, y, x)
def mnp_clip(x):
a = mnp.clip(x, to_tensor(10.0), to_tensor([2,]))
b = mnp.clip(x, 0, 1)
c = mnp.clip(x, to_tensor(0), to_tensor(10), dtype=mnp.float32)
d = x.clip(to_tensor(10.0), to_tensor([2,]))
e = x.clip(0, 1)
return a, b, c, d, e
def onp_clip(x):
a = onp.clip(x, onp.asarray(10.0), onp.asarray([2,]))
b = onp.clip(x, 0, 1)
c = onp.clip(x, onp.asarray(0), onp.asarray(10), dtype=onp.float32)
d = x.clip(onp.asarray(10.0), onp.asarray([2,]))
e = x.clip(0, 1)
return a, b, c, d, e
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_clip():
run_unary_test(mnp_clip, onp_clip, test_case)
def mnp_amax(x, mask):
a = mnp.amax(x)
b = mnp.amax(x, axis=-3)
c = mnp.amax(x, keepdims=True)
d = mnp.amax(x, initial=3)
e = mnp.amax(x, axis=(0, 1), keepdims=True)
f = mnp.amax(x, initial=4, where=mask)
g = mnp.amax(x, initial=5, where=mask, keepdims=True)
h = mnp.amax(x, axis=(1, 2, 3), initial=6, where=mask)
return a, b, c, d, e, f, g, h
def onp_amax(x, mask):
a = onp.amax(x)
b = onp.amax(x, axis=-3)
c = onp.amax(x, keepdims=True)
d = onp.amax(x, initial=3)
e = onp.amax(x, axis=(0, 1), keepdims=True)
f = onp.amax(x, initial=4, where=mask)
g = onp.amax(x, initial=5, where=mask, keepdims=True)
h = onp.amax(x, axis=(1, 2, 3), initial=6, where=mask)
return a, b, c, d, e, f, g, h
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_amax():
a = rand_int(2, 3, 4, 5).astype('float32')
mask = rand_bool(2, 3, 4, 5)
run_multi_test(mnp_amax, onp_amax, (a, mask))
match_res(mnp.amax, onp.amax, rand_int())
def mnp_amin(x, mask):
a = mnp.amin(x)
b = mnp.amin(x, axis=-3)
c = mnp.amin(x, keepdims=True)
d = mnp.amin(x, initial=-1)
e = mnp.amin(x, axis=(0, 1), keepdims=True)
f = mnp.amin(x, initial=-2)
g = mnp.amin(x, initial=-3, keepdims=True)
h = mnp.amin(x, axis=(1, 2, 3), initial=-4, where=mask)
return a, b, c, d, e, f, g, h
def onp_amin(x, mask):
a = onp.amin(x)
b = onp.amin(x, axis=-3)
c = onp.amin(x, keepdims=True)
d = onp.amin(x, initial=-1)
e = onp.amin(x, axis=(0, 1), keepdims=True)
f = onp.amin(x, initial=-2)
g = onp.amin(x, initial=-3, keepdims=True)
h = onp.amin(x, axis=(1, 2, 3), initial=-4, where=mask)
return a, b, c, d, e, f, g, h
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_amin():
a = rand_int(2, 3, 4, 5).astype('float32')
mask = rand_bool(2, 3, 4, 5)
run_multi_test(mnp_amin, onp_amin, (a, mask))
match_res(mnp.amin, onp.amin, rand_int())
def mnp_hypot(x1, x2):
return mnp.hypot(x1, x2)
def onp_hypot(x1, x2):
return onp.hypot(x1, x2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_hypot():
run_binop_test(mnp_hypot, onp_hypot, test_case)
def mnp_heaviside(x1, x2):
return mnp.heaviside(x1, x2)
def onp_heaviside(x1, x2):
return onp.heaviside(x1, x2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_heaviside():
broadcastables = test_case.broadcastables
for b1 in broadcastables:
for b2 in broadcastables:
b = onp.subtract(b1, b2)
match_res(mnp_heaviside, onp_heaviside, b, b1)
match_res(mnp_heaviside, onp_heaviside, b, b2)
def mnp_floor(x):
return mnp.floor(x)
def onp_floor(x):
return onp.floor(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_floor():
run_unary_test(mnp_floor, onp_floor, test_case)
x = rand_int(2, 3) * onp.random.rand(2, 3)
match_res(mnp_floor, onp_floor, x)
match_res(mnp_floor, onp_floor, -x)
def mnp_floor_divide(x, y):
return mnp.floor_divide(x, y)
def onp_floor_divde(x, y):
return onp.floor_divide(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_floor_divide():
run_binop_test(mnp_floor_divide, onp_floor_divde, test_case)
def mnp_remainder(x, y):
return mnp.remainder(x, y)
def onp_remainder(x, y):
return onp.remainder(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_remainder():
x = rand_int(2, 3)
y = rand_int(2, 3)
match_res(mnp_remainder, onp_remainder, x, y)
def mnp_mod(x, y):
return mnp.mod(x, y)
def onp_mod(x, y):
return onp.mod(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_mod():
x = rand_int(2, 3)
y = rand_int(2, 3)
match_res(mnp_mod, onp_mod, x, y)
def mnp_fmod(x, y):
return mnp.fmod(x, y)
def onp_fmod(x, y):
return onp.fmod(x, y)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_fmod():
x = rand_int(2, 3)
y = rand_int(2, 3)
match_res(mnp_fmod, onp_fmod, x, y)
def mnp_fix(x):
return mnp.fix(x)
def onp_fix(x):
return onp.fix(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_fix():
x = rand_int(2, 3)
y = rand_int(2, 3)
floats = onp.divide(onp.subtract(x, y), y)
match_res(mnp_fix, onp_fix, floats, error=1e-5)
def mnp_trunc(x):
return mnp.trunc(x)
def onp_trunc(x):
return onp.trunc(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_trunc():
x = rand_int(2, 3)
y = rand_int(2, 3)
floats = onp.divide(onp.subtract(x, y), y)
match_res(mnp_trunc, onp_trunc, floats, error=1e-5)
def mnp_exp(x):
return mnp.exp(x)
def onp_exp(x):
return onp.exp(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_exp():
run_unary_test(mnp_exp, onp_exp, test_case, error=5)
def mnp_expm1(x):
return mnp.expm1(x)
def onp_expm1(x):
return onp.expm1(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_expm1():
run_unary_test(mnp_expm1, onp_expm1, test_case, error=5)
def mnp_exp2(x):
return mnp.exp2(x)
def onp_exp2(x):
return onp.exp2(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_exp2():
run_unary_test(mnp_exp2, onp_exp2, test_case, error=5)
def mnp_kron(x, y):
return mnp.kron(x, y)
def onp_kron(x, y):
return onp.kron(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_kron():
x = rand_int()
y = rand_int(2, 3, 4)
match_res(mnp.kron, onp.kron, x, y)
x = rand_int(6, 1)
y = rand_int(7, 1, 5)
match_res(mnp.kron, onp.kron, x, y)
x = rand_int(1, 1, 2, 3)
y = rand_int(1, 1, 2, 3)
match_res(mnp.kron, onp.kron, x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cross():
x = onp.arange(8).reshape(2, 2, 1, 2)
y = onp.arange(4).reshape(1, 2, 2)
match_res(mnp.cross, onp.cross, x, y)
match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2)
match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2, axis=1)
x = onp.arange(18).reshape(2, 3, 1, 3)
y = onp.arange(9).reshape(1, 3, 3)
match_res(mnp.cross, onp.cross, x, y)
match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2)
match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2, axis=1)
def mnp_ceil(x):
return mnp.ceil(x)
def onp_ceil(x):
return onp.ceil(x)
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ceil():
run_unary_test(mnp_ceil, onp_ceil, test_case)
def mnp_positive(x):
return mnp.positive(x)
def onp_positive(x):
return onp.positive(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_positive():
arr = onp.arange(-6, 6).reshape((2, 2, 3)).astype('float32')
onp_pos = onp_positive(arr)
mnp_pos = mnp_positive(to_tensor(arr))
match_array(mnp_pos.asnumpy(), onp_pos)
def mnp_negative(x):
return mnp.negative(x)
def onp_negative(x):
return onp.negative(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_negative():
arr = onp.arange(-6, 6).reshape((2, 2, 3)).astype('float32')
onp_neg = onp_negative(arr)
mnp_neg = mnp_negative(to_tensor(arr))
match_array(mnp_neg.asnumpy(), onp_neg, 1e-5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cumsum():
x = mnp.ones((16, 16), dtype="bool")
match_array(mnp.cumsum(x).asnumpy(), onp.cumsum(x.asnumpy()))
match_array(mnp.cumsum(x, axis=0).asnumpy(),
onp.cumsum(x.asnumpy(), axis=0))
match_meta(mnp.cumsum(x).asnumpy(), onp.cumsum(x.asnumpy()))
x = rand_int(3, 4, 5)
match_array(mnp.cumsum(to_tensor(x), dtype="bool").asnumpy(),
onp.cumsum(x, dtype="bool"))
match_array(mnp.cumsum(to_tensor(x), axis=-1).asnumpy(),
onp.cumsum(x, axis=-1))
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_promote_types():
assert mnp.promote_types(mnp.int32, mnp.bool_) == mnp.int32
assert mnp.promote_types(int, mnp.bool_) == mnp.int32
assert mnp.promote_types("float32", mnp.int64) == mnp.float32
assert mnp.promote_types(mnp.int64, mnp.float16) == mnp.float16
assert mnp.promote_types(int, float) == mnp.float32
def mnp_diff(input_tensor):
a = mnp.diff(input_tensor, 2, append=3.0)
b = mnp.diff(input_tensor, 4, prepend=6, axis=-2)
c = mnp.diff(input_tensor, 0, append=3.0, axis=-1)
d = mnp.diff(input_tensor, 1, prepend=input_tensor)
e = mnp.ediff1d(input_tensor, to_end=input_tensor)
f = mnp.ediff1d(input_tensor)
g = mnp.ediff1d(input_tensor, to_begin=3)
return a, b, c, d, e, f, g
def onp_diff(input_array):
a = onp.diff(input_array, 2, append=3.0)
b = onp.diff(input_array, 4, prepend=6, axis=-2)
c = onp.diff(input_array, 0, append=3.0, axis=-1)
d = onp.diff(input_array, 1, prepend=input_array)
e = onp.ediff1d(input_array, to_end=input_array)
f = onp.ediff1d(input_array)
g = onp.ediff1d(input_array, to_begin=3)
return a, b, c, d, e, f, g
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_diff():
arr = rand_int(3, 4, 5)
match_res(mnp_diff, onp_diff, arr)
arr = rand_int(1, 4, 6, 3)
match_res(mnp_diff, onp_diff, arr)
def mnp_sin(x):
return mnp.sin(x)
def onp_sin(x):
return onp.sin(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_sin():
arr = onp.random.rand(2, 3, 4).astype('float32')
expect = onp_sin(arr)
actual = mnp_sin(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_cos(x):
return mnp.cos(x)
def onp_cos(x):
return onp.cos(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cos():
arr = onp.random.rand(2, 3, 4).astype('float32')
expect = onp_cos(arr)
actual = mnp_cos(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_tan(x):
return mnp.tan(x)
def onp_tan(x):
return onp.tan(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tan():
arr = onp.array([-0.75, -0.5, 0, 0.5, 0.75]).astype('float32')
expect = onp_tan(arr)
actual = mnp_tan(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_arcsin(x):
return mnp.arcsin(x)
def onp_arcsin(x):
return onp.arcsin(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arcsin():
arr = onp.random.uniform(-1, 1, 12).astype('float32')
onp_asin = onp_arcsin(arr)
mnp_asin = mnp_arcsin(to_tensor(arr))
match_array(mnp_asin.asnumpy(), onp_asin, error=3)
def mnp_arccos(x):
return mnp.arccos(x)
def onp_arccos(x):
return onp.arccos(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arccos():
arr = onp.random.uniform(-1, 1, 12).astype('float32')
onp_acos = onp_arccos(arr)
mnp_acos = mnp_arccos(to_tensor(arr))
match_array(mnp_acos.asnumpy(), onp_acos, error=2)
def mnp_arctan(x):
return mnp.arctan(x)
def onp_arctan(x):
return onp.arctan(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arctan():
arr = onp.random.uniform(-1, 1, 12).astype('float32')
onp_atan = onp_arctan(arr)
mnp_atan = mnp_arctan(to_tensor(arr))
match_array(mnp_atan.asnumpy(), onp_atan, error=5)
def mnp_sinh(x):
return mnp.sinh(x)
def onp_sinh(x):
return onp.sinh(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_sinh():
arr = onp.random.rand(2, 3, 4).astype('float32')
expect = onp_sinh(arr)
actual = mnp_sinh(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_cosh(x):
return mnp.cosh(x)
def onp_cosh(x):
return onp.cosh(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cosh():
arr = onp.random.rand(2, 3, 4).astype('float32')
expect = onp_cosh(arr)
actual = mnp_cosh(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_tanh(x):
return mnp.tanh(x)
def onp_tanh(x):
return onp.tanh(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tanh():
arr = onp.random.rand(2, 3, 4).astype('float32')
expect = onp_tanh(arr)
actual = mnp_tanh(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_arcsinh(x):
return mnp.arcsinh(x)
def onp_arcsinh(x):
return onp.arcsinh(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arcsinh():
arr = onp.random.rand(2, 3, 4).astype('float32')
expect = onp_arcsinh(arr)
actual = mnp_arcsinh(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_arccosh(x):
return mnp.arccosh(x)
def onp_arccosh(x):
return onp.arccosh(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arccosh():
arr = onp.random.randint(1, 100, size=(2, 3)).astype('float32')
expect = onp_arccosh(arr)
actual = mnp_arccosh(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_arctanh(x):
return mnp.arctanh(x)
def onp_arctanh(x):
return onp.arctanh(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arctanh():
arr = onp.random.uniform(-0.9, 1, 10).astype('float32')
expect = onp_arctanh(arr)
actual = mnp_arctanh(to_tensor(arr))
match_array(actual.asnumpy(), expect, error=5)
def mnp_arctan2(x, y):
return mnp.arctan2(x, y)
def onp_arctan2(x, y):
return onp.arctan2(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arctan2():
run_binop_test(mnp_arctan2, onp_arctan2, test_case, error=5)
def mnp_convolve(mode):
a = mnp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
b = mnp.convolve([1, 2, 3, 4, 5], [2, 3], mode=mode)
c = mnp.convolve([1, 2], [2, 5, 10], mode=mode)
d = mnp.convolve(mnp.array([1, 2, 3, 4, 5]), mnp.array([1, 2, 3, 4, 5]), mode=mode)
e = mnp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
return a, b, c, d, e
def onp_convolve(mode):
a = onp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
b = onp.convolve([1, 2, 3, 4, 5], [2, 3], mode=mode)
c = onp.convolve([1, 2], [2, 5, 10], mode=mode)
d = onp.convolve(onp.array([1, 2, 3, 4, 5]), onp.array([1, 2, 3, 4, 5]), mode=mode)
e = onp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
return a, b, c, d, e
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_convolve():
for mode in ['full', 'same', 'valid']:
mnp_res = mnp_convolve(mode)
onp_res = onp_convolve(mode)
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cov():
x = onp.random.random((3, 4)).tolist()
w1 = [0, 1, 2, 3]
w2 = [4, 5, 6, 7]
mnp_res = mnp.cov(x, fweights=w1, aweights=w2, ddof=3)
onp_res = onp.cov(x, fweights=w1, aweights=w2, ddof=3)
match_all_arrays(mnp_res, onp_res, error=1e-5)
mnp_res = mnp.cov(x, fweights=w1, aweights=w2, bias=True)
onp_res = onp.cov(x, fweights=w1, aweights=w2, bias=True)
match_all_arrays(mnp_res, onp_res, error=1e-5)
mnp_res = mnp.cov(x, fweights=w1[0:3], aweights=w2[0:3], rowvar=False, bias=True)
onp_res = onp.cov(x, fweights=w1[0:3], aweights=w2[0:3], rowvar=False, bias=True)
match_all_arrays(mnp_res, onp_res, error=1e-5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_trapz():
y = rand_int(2, 3, 4, 5)
match_res(mnp.trapz, onp.trapz, y)
match_res(mnp.trapz, onp.trapz, y, x=[-5, -3, 0, 7, 10])
match_res(mnp.trapz, onp.trapz, y, dx=2, axis=3)
match_res(mnp.trapz, onp.trapz, y, x=[1, 5, 6, 9], dx=3, axis=-2)
def mnp_gcd(x, y):
return mnp.gcd(x, y)
def onp_gcd(x, y):
return onp.gcd(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_gcd():
x = onp.arange(-12, 12).reshape(2, 3, 4)
y = onp.arange(24).reshape(2, 3, 4)
match_res(mnp_gcd, onp_gcd, x, y)
def mnp_lcm(x, y):
return mnp.lcm(x, y)
def onp_lcm(x, y):
return onp.lcm(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_lcm():
x = onp.arange(-12, 12).reshape(2, 3, 4)
y = onp.arange(24).reshape(2, 3, 4)
match_res(mnp_lcm, onp_lcm, x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_exception_innner():
with pytest.raises(ValueError):
mnp.inner(to_tensor(test_case.arrs[0]),
to_tensor(test_case.arrs[1]))
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_exception_add():
with pytest.raises(ValueError):
mnp.add(to_tensor(test_case.arrs[1]), to_tensor(test_case.arrs[2]))
def mnp_nanmax(x):
a = mnp.nanmax(x)
b = mnp.nanmax(x, keepdims=True)
c = mnp.nanmax(x, axis=-2)
d = mnp.nanmax(x, axis=0, keepdims=True)
e = mnp.nanmax(x, axis=(-2, 3))
f = mnp.nanmax(x, axis=(-3, -1), keepdims=True)
return a, b, c, d, e, f
def onp_nanmax(x):
a = onp.nanmax(x)
b = onp.nanmax(x, keepdims=True)
c = onp.nanmax(x, axis=-2)
d = onp.nanmax(x, axis=0, keepdims=True)
e = onp.nanmax(x, axis=(-2, 3))
f = onp.nanmax(x, axis=(-3, -1), keepdims=True)
return a, b, c, d, e, f
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nanmax():
x = rand_int(2, 3, 4, 5)
x[0][2][1][3] = onp.nan
x[1][0][2][4] = onp.nan
x[1][1][1][1] = onp.nan
run_multi_test(mnp_nanmax, onp_nanmax, (x,))
def mnp_nanmin(x):
a = mnp.nanmin(x)
b = mnp.nanmin(x, keepdims=True)
c = mnp.nanmin(x, axis=-2)
d = mnp.nanmin(x, axis=0, keepdims=True)
e = mnp.nanmin(x, axis=(-2, 3))
f = mnp.nanmin(x, axis=(-3, -1), keepdims=True)
return a, b, c, d, e, f
def onp_nanmin(x):
a = onp.nanmin(x)
b = onp.nanmin(x, keepdims=True)
c = onp.nanmin(x, axis=-2)
d = onp.nanmin(x, axis=0, keepdims=True)
e = onp.nanmin(x, axis=(-2, 3))
f = onp.nanmin(x, axis=(-3, -1), keepdims=True)
return a, b, c, d, e, f
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nanmin():
x = rand_int(2, 3, 4, 5)
x[0][2][1][3] = onp.nan
x[1][0][2][4] = onp.nan
x[1][1][1][1] = onp.nan
run_multi_test(mnp_nanmin, onp_nanmin, (x,))
def mnp_nansum(x):
a = mnp.nansum(x)
b = mnp.nansum(x, keepdims=True)
c = mnp.nansum(x, axis=-2)
d = mnp.nansum(x, axis=0, keepdims=True)
e = mnp.nansum(x, axis=(-2, 3))
f = mnp.nansum(x, axis=(-3, -1), keepdims=True)
return a, b, c, d, e, f
def onp_nansum(x):
a = onp.nansum(x)
b = onp.nansum(x, keepdims=True)
c = onp.nansum(x, axis=-2)
d = onp.nansum(x, axis=0, keepdims=True)
e = onp.nansum(x, axis=(-2, 3))
f = onp.nansum(x, axis=(-3, -1), keepdims=True)
return a, b, c, d, e, f
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nansum():
x = rand_int(2, 3, 4, 5)
x[0][2][1][3] = onp.nan
x[1][0][2][4] = onp.nan
x[1][1][1][1] = onp.nan
run_multi_test(mnp_nansum, onp_nansum, (x,))
match_res(mnp.nansum, onp.nansum, rand_int())
def mnp_nanmean(x):
a = mnp.nanmean(x, keepdims=True)
b = mnp.nanmean(x, axis=(-2, 3))
c = mnp.nanmean(x, axis=(-3, -1), keepdims=True)
return a, b, c
def onp_nanmean(x):
a = onp.nanmean(x, keepdims=True)
b = onp.nanmean(x, axis=(-2, 3))
c = onp.nanmean(x, axis=(-3, -1), keepdims=True)
return a, b, c
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nanmean():
x = rand_int(2, 3, 4, 5)
x[0][2][1][3] = onp.nan
x[1][0][2][4] = onp.nan
x[1][1][1][1] = onp.nan
run_multi_test(mnp_nanmean, onp_nanmean, (x,))
match_res(mnp.nanmean, onp.nanmean, rand_int())
def mnp_mean(*arrs):
arr1 = arrs[0]
arr2 = arrs[1]
arr3 = arrs[2]
a = mnp.mean(arr1)
b = mnp.mean(arr2, keepdims=True)
c = mnp.mean(arr3, keepdims=False)
d = mnp.mean(arr2, axis=0, keepdims=True)
e = mnp.mean(arr3, axis=(0, -1))
f = mnp.mean(arr3, axis=-1, keepdims=True)
return a, b, c, d, e, f
def onp_mean(*arrs):
arr1 = arrs[0]
arr2 = arrs[1]
arr3 = arrs[2]
a = onp.mean(arr1)
b = onp.mean(arr2, keepdims=True)
c = onp.mean(arr3, keepdims=False)
d = onp.mean(arr2, axis=0, keepdims=True)
e = onp.mean(arr3, axis=(0, -1))
f = onp.mean(arr3, axis=-1, keepdims=True)
return a, b, c, d, e, f
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_mean():
run_multi_test(mnp_mean, onp_mean, test_case.arrs, error=3)
run_multi_test(mnp_mean, onp_mean, test_case.expanded_arrs, error=3)
run_multi_test(mnp_mean, onp_mean, test_case.scalars, error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_corrcoef():
x = onp.random.random((3, 4)).tolist()
mnp_res = mnp.corrcoef(x)
onp_res = onp.corrcoef(x)
match_all_arrays(mnp_res, onp_res, error=1e-5)
mnp_res = mnp.corrcoef(x, rowvar=False)
onp_res = onp.corrcoef(x, rowvar=False)
match_all_arrays(mnp_res, onp_res, error=1e-5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_multi_dot():
arrays = [rand_int(3), rand_int(3, 5), rand_int(5, 2), rand_int(2, 7), rand_int(7)]
mnp_arrays = [to_tensor(arr) for arr in arrays]
match_all_arrays(mnp.multi_dot(mnp_arrays), onp.linalg.multi_dot(arrays))
match_all_arrays(mnp.multi_dot(mnp_arrays[1:]), onp.linalg.multi_dot(arrays[1:]))
match_all_arrays(mnp.multi_dot(mnp_arrays[:-1]), onp.linalg.multi_dot(arrays[:-1]))
match_all_arrays(mnp.multi_dot(mnp_arrays[1:-1]), onp.linalg.multi_dot(arrays[1:-1]))
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_gradient():
f = onp.random.random((3, 4, 5)).tolist()
mnp_res = mnp.gradient(f, -3, axis=(-1, 1))
onp_res = onp.gradient(f, -3, axis=(-1, 1))
match_all_arrays(mnp_res, onp_res, error=1e-5)
mnp_res = mnp.gradient(f, -3, 5, axis=(-1, 0))
onp_res = onp.gradient(f, -3, 5, axis=(-1, 0))
match_all_arrays(mnp_res, onp_res, error=1e-5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_argmax():
match_res(mnp.argmax, onp.argmax, rand_int())
match_res(mnp.argmax, onp.argmax, rand_int(3))
match_res(mnp.argmax, onp.argmax, rand_int(1, 1, 1))
x = onp.random.choice(onp.arange(-100, 100), size=(2, 3, 4, 5), replace=False)
match_res(mnp.argmax, onp.argmax, x)
for i in range(-4, 4):
match_res(mnp.argmax, onp.argmax, x, axis=i)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_argmin():
match_res(mnp.argmin, onp.argmin, rand_int())
match_res(mnp.argmin, onp.argmin, rand_int(3))
match_res(mnp.argmin, onp.argmin, rand_int(1, 1, 1))
x = rand_int(2, 3, 4, 5)
match_res(mnp.argmin, onp.argmin, x)
for i in range(-4, 4):
match_res(mnp.argmin, onp.argmin, x, axis=i)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_searchsorted():
x = onp.arange(-10, 10)
y = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
sorter = onp.random.shuffle(onp.arange(20))
match_res(mnp.searchsorted, onp.searchsorted, x, y, side='right', sorter=sorter)
@pytest.mark.level2
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_interp():
x = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
xp = onp.arange(-10, 10)
fp = onp.random.uniform(-50, 50, 20)
match_res(mnp.interp, onp.interp, x, xp, fp, error=3)
match_res(mnp.interp, onp.interp, x, xp, fp, left=onp.random.rand(), error=3)
match_res(mnp.interp, onp.interp, x, xp, fp, right=onp.random.rand(), error=3)
match_res(mnp.interp, onp.interp, x, xp, fp, left=onp.random.rand(), right=onp.random.rand(), error=3)
@pytest.mark.level2
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_digitize():
bins = onp.random.randint(-10, 10, size=10)
bins.sort()
x = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
match_res(mnp.digitize, onp.digitize, x, [])
match_res(mnp.digitize, onp.digitize, [], [])
match_res(mnp.digitize, onp.digitize, [], bins)
match_res(mnp.digitize, onp.digitize, x, bins)
match_res(mnp.digitize, onp.digitize, x, bins, right=True)
bins = onp.flip(bins)
match_res(mnp.digitize, onp.digitize, x, bins)
match_res(mnp.digitize, onp.digitize, x, bins, right=True)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_bincount():
x = onp.random.randint(0, 10, 20)
weights = onp.random.randn(20)
match_res(mnp.bincount, onp.bincount, x, dtype=mnp.int32)
match_res(mnp.bincount, onp.bincount, x, minlength=25, dtype=mnp.int32)
match_all_arrays(mnp.bincount(to_tensor(x), to_tensor(weights)),
onp.bincount(x, weights), error=3)
match_all_arrays(mnp.bincount(to_tensor(x), to_tensor(weights), minlength=25),
onp.bincount(x, weights, minlength=25), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_histogram():
x = onp.random.randint(-10, 10, 10)
for bins in [(1, 2, 3), [2], 1, 5]:
# pylint: disable=redefined-builtin
for range in [None, (2, 20)]:
match_res(mnp.histogram, onp.histogram, x, bins=bins, range=range, error=1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_histogramdd():
x = onp.random.randint(-10, 10, (5, 3))
for bins in [(15, 4, 9)]:
# pylint: disable=redefined-builtin
for range in [[[0, 5], [2, 7], [1, 3]]]:
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range)
onp_res = onp.histogramdd(x, bins=bins, range=range)
match_all_arrays(mnp_res[0], onp_res[0], error=1)
match_all_arrays(mnp_res[1], onp_res[1], error=1)
bins = onp.arange(24).reshape(3, 8)
mnp_res = mnp.histogramdd(to_tensor(x), bins=to_tensor(bins))
onp_res = onp.histogramdd(x, bins=bins)
match_all_arrays(mnp_res[0], onp_res[0], error=1)
match_all_arrays(mnp_res[1], onp_res[1], error=1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_histogram2d():
x = onp.random.randint(-10, 10, 10)
y = onp.random.randint(-10, 10, 10)
for bins in [4, [8, [1, 2, 3]]]:
# pylint: disable=redefined-builtin
for range in [None, [(3, 3), (2, 20)]]:
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, error=1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_exception_mean():
with pytest.raises(ValueError):
mnp.mean(to_tensor(test_case.arrs[0]), (-1, 0))
def mnp_sum(x):
a = mnp.sum(x)
b = mnp.sum(x, axis=0)
c = mnp.sum(x, axis=(0, 1))
d = mnp.sum(x, keepdims=True)
e = mnp.sum(x, initial=-1)
f = mnp.sum(x, initial=1)
g = mnp.sum(x, axis=(0, 2, -2), keepdims=True, initial=0.5, dtype=mnp.float64)
return a, b, c, d, e, f, g
def onp_sum(x):
a = onp.sum(x)
b = onp.sum(x, axis=0)
c = onp.sum(x, axis=(0, 1))
d = onp.sum(x, keepdims=True)
e = onp.sum(x, initial=-1)
f = onp.sum(x, initial=1)
g = onp.sum(x, axis=(0, 2, -2), keepdims=True, initial=0.5, dtype=onp.float64)
return a, b, c, d, e, f, g
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_sum():
onp_arr = onp.random.rand(2, 3, 4).astype('float32')
mnp_arr = to_tensor(onp_arr)
for actual, expected in zip(mnp_sum(mnp_arr), onp_sum(onp_arr)):
match_array(actual.asnumpy(), expected, error=5)
def mnp_sign(x):
return mnp.sign(x)
def onp_sign(x):
return onp.sign(x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_sign():
onp_arr = [
onp.array(3.5).astype('float32'),
onp.arange(-5, 5).astype('float32'),
onp.random.rand(2, 3, 4).astype('float32')
]
mnp_arr = list(map(to_tensor, onp_arr))
for onp_x, mnp_x in zip(onp_arr, mnp_arr):
expected = onp_sign(onp_x)
actual = mnp_sign(mnp_x)
match_array(actual.asnumpy(), expected, error=5)
def mnp_copysign(x, y):
return mnp.copysign(x, y)
def onp_copysign(x, y):
return onp.copysign(x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_copysign():
onp_arr = [[onp.array([1, -1, 2, -3]).astype('float32'),
onp.array([1, -1, -1, 1]).astype('float32')],
[onp.random.rand(2, 3, 4).astype('float32'),
onp.random.rand(2, 3, 4).astype('float32')]]
mnp_arr = list(map(to_tensor, onp_arr))
for onp_x, mnp_x in zip(onp_arr, mnp_arr):
expected = onp_copysign(onp_x[0], onp_x[1])
actual = mnp_copysign(mnp_x[0], mnp_x[1])
match_array(actual.asnumpy(), expected, error=5)
def mnp_matrix_power(x):
a = mnp.matrix_power(x, 0)
b = mnp.matrix_power(x, 1)
c = mnp.matrix_power(x, 2)
d = mnp.matrix_power(x, 3)
return a, b, c, d
def onp_matrix_power(x):
a = onp.linalg.matrix_power(x, 0)
b = onp.linalg.matrix_power(x, 1)
c = onp.linalg.matrix_power(x, 2)
d = onp.linalg.matrix_power(x, 3)
return a, b, c, d
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_matrix_power():
arrs = [
onp.random.rand(2, 2).astype('float32'),
onp.random.rand(3, 2, 2).astype('float32'),
onp.random.rand(5, 4, 3, 3).astype('float32'),
]
for x in arrs:
onp_res = onp_matrix_power(x)
mnp_res = mnp_matrix_power(to_tensor(x))
for expected, actual in zip(onp_res, mnp_res):
match_array(actual.asnumpy(), expected, error=5)
def mnp_around(x):
a = mnp.around(x)
b = mnp.around(x, 1)
c = mnp.around(x, 2)
d = mnp.around(x, 3)
return a, b, c, d
def onp_around(x):
a = onp.around(x)
b = onp.around(x, 1)
c = onp.around(x, 2)
d = onp.around(x, 3)
return a, b, c, d
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_around():
arrs = [
onp.random.rand(2, 2).astype('float32'),
onp.random.rand(3, 2, 2).astype('float32'),
onp.random.rand(5, 4, 3, 3).astype('float32'),
]
for x in arrs:
onp_res = onp_around(x)
mnp_res = mnp_around(to_tensor(x))
for expected, actual in zip(onp_res, mnp_res):
match_array(actual.asnumpy(), expected, error=5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_polyadd():
arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(7)]
for x in arrs:
for y in arrs:
match_res(mnp.polyadd, onp.polyadd, x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_polysub():
arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(7)]
for x in arrs:
for y in arrs:
match_res(mnp.polysub, onp.polysub, x, y, error=1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_polyval():
polys = [rand_int(1), rand_int(3), rand_int(7)]
arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(2, 3, 1), rand_int(1, 5, 4)]
for p in polys:
for x in arrs:
match_res(mnp.polyval, onp.polyval, p, x, error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_polyder():
poly = rand_int(7)
for i in range(5):
match_res(mnp.polyder, onp.polyder, poly, m=i)
@pytest.mark.level2
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_polymul():
arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(7)]
for x in arrs:
for y in arrs:
match_res(mnp.polymul, onp.polymul, x, y)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_polyint():
poly = rand_int(7)
match_res(mnp.polyint, onp.polyint, poly, m=1, k=7, error=3)
match_res(mnp.polyint, onp.polyint, poly, m=1, k=[9], error=3)
match_res(mnp.polyint, onp.polyint, poly, m=3, k=2, error=3)
for i in range(5):
match_res(mnp.polyint, onp.polyint, poly, m=i, k=rand_int(i).tolist(), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_result_type():
x = ('?', True, mnp.uint16, mnp.ones((2, 3)).astype(mnp.int32), 'float')
y = ('?', True, onp.uint16, onp.ones((2, 3)).astype(onp.int32), 'float')
for i in range(4):
mnp_args = x[:i + 1]
actual = dtype_to_nptype(mnp.result_type(*mnp_args))
onp_args = y[:i + 1]
expected = onp.result_type(*onp_args)
if expected == onp.int64:
expected = onp.int
elif expected == onp.float64:
expected = onp.float32
assert actual == expected
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_unwrap():
x = onp.linspace(onp.linspace((0, 1), (10, 15), 5), onp.linspace((0, 2), (3*onp.pi, 7*onp.pi), 5), 7)
x[5:2] += onp.pi
match_res(mnp.unwrap, onp.unwrap, x, axis=0, error=3)
match_res(mnp.unwrap, onp.unwrap, x, axis=-1, error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_exception_amax():
with pytest.raises(TypeError):
mnp.amax(mnp.array([[1, 2], [3, 4]]).astype(mnp.float32), initial=[1.0, 2.0])
def mnp_cumprod(x):
a = mnp.cumprod(x)
b = mnp.cumprod(x, axis=0)
c = mnp.cumprod(x, axis=1)
return a, b, c
def onp_cumprod(x):
a = onp.cumprod(x)
b = onp.cumprod(x, axis=0)
c = onp.cumprod(x, axis=1)
return a, b, c
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_cumprod():
mnp_x = mnp.arange(1, 7).reshape(2, 3)
tensors = [mnp_x.astype('bool'),
mnp_x.astype('uint8'),
mnp_x.astype('int16'),
mnp_x.astype('float16'),
mnp_x.astype('float32')]
for x in tensors:
onp_res = onp_cumprod(x.asnumpy())
mnp_res = mnp_cumprod(x)
for expected, actual in zip(onp_res, mnp_res):
match_array(actual.asnumpy(), expected, error=5)
def mnp_ravel_multi_index(x):
a = mnp.ravel_multi_index(x, (7, 6))
b = mnp.ravel_multi_index(x, (7, 6), order='F')
c = mnp.ravel_multi_index(x, (4, 6), mode='clip')
d = mnp.ravel_multi_index(x, (4, 4), mode='wrap')
return a, b, c, d
def onp_ravel_multi_index(x):
a = onp.ravel_multi_index(x, (7, 6))
b = onp.ravel_multi_index(x, (7, 6), order='F')
c = onp.ravel_multi_index(x, (4, 6), mode='clip')
d = onp.ravel_multi_index(x, (4, 4), mode='wrap')
return a, b, c, d
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_ravel_multi_index():
x = mnp.array([[3, 6, 6], [4, 5, 1]])
onp_res = onp_ravel_multi_index(x.asnumpy())
mnp_res = mnp_ravel_multi_index(x)
for expected, actual in zip(onp_res, mnp_res):
match_array(actual.asnumpy(), expected, error=5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_norm():
arrs = [rand_int(5, 2, 3, 7)]
for x in arrs:
for keepdims in [True, False]:
match_res(mnp.norm, onp.linalg.norm, x, keepdims=keepdims, error=3)
x = rand_int(3, 6, 4, 5)
axes = [(0, 1), (0, 3), (1, 3), (2, 3)]
order = [None, 'fro', float('inf'), -float('inf'), 1, -1]
for axis in axes:
# pylint: disable=redefined-builtin
for ord in order:
for keepdims in [True, False]:
match_res(mnp.norm, onp.linalg.norm, x, ord=ord, axis=axis, keepdims=keepdims, error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bitwise_and():
arrs = [onp.random.randint(-100, 100, ()), onp.random.randint(-100, 100, (1,)),
onp.random.randint(-100, 100, (5,)), onp.random.randint(-100, 100, (3, 1)),
onp.random.randint(-100, 100, (4, 1, 5))]
for x in arrs:
for y in arrs:
match_res(mnp.bitwise_and, onp.bitwise_and, x, y, dtype=mnp.int32)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bitwise_or():
arrs = [onp.random.randint(-100, 100, ()), onp.random.randint(-100, 100, (1,)),
onp.random.randint(-100, 100, (5,)), onp.random.randint(-100, 100, (3, 1)),
onp.random.randint(-100, 100, (4, 1, 5))]
for x in arrs:
for y in arrs:
match_res(mnp.bitwise_or, onp.bitwise_or, x, y, dtype=mnp.int32)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bitwise_xor():
arrs = [onp.random.randint(-100, 100, ()), onp.random.randint(-100, 100, (1,)),
onp.random.randint(-100, 100, (5,)), onp.random.randint(-100, 100, (3, 1)),
onp.random.randint(-100, 100, (4, 1, 5))]
for x in arrs:
for y in arrs:
match_res(mnp.bitwise_xor, onp.bitwise_xor, x, y, dtype=mnp.int32)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_invert():
x = onp.random.randint(-100, 100, (2, 3))
match_res(mnp.invert, onp.invert, x, dtype=mnp.int16)
match_res(mnp.invert, onp.invert, x.astype(onp.uint16), dtype=mnp.uint16)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_rint():
arrs = [
onp.random.rand(2, 2).astype('float32'),
onp.random.rand(3, 2, 2).astype('float32'),
onp.random.rand(5, 4, 3, 3).astype('float32'),
]
for x in arrs:
for expected, actual in zip(onp.rint(x), mnp.rint(to_tensor(x))):
match_array(actual.asnumpy(), expected, error=5)
def mnp_correlate(a, v):
a = mnp.correlate(a, v, mode="valid")
b = mnp.correlate(a, v, mode="full")
c = mnp.correlate(a, v, mode="same")
d = mnp.correlate(a, v)
return a, b, c, d
def onp_correlate(a, v):
a = onp.correlate(a, v, mode="valid")
b = onp.correlate(a, v, mode="full")
c = onp.correlate(a, v, mode="same")
d = onp.correlate(a, v)
return a, b, c, d
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_correlate():
mnp_res = mnp_correlate([1, 2, 3, 4, 5], [1, 2, 3])
onp_res = onp_correlate([1, 2, 3, 4, 5], [1, 2, 3])
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tensor_searchsorted():
x = onp.arange(-10, 10)
mnp_x = to_tensor(x)
y = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
sorter = onp.random.shuffle(onp.arange(20))
match_res(mnp_x.searchsorted, x.searchsorted, y)
match_res(mnp_x.searchsorted, x.searchsorted, y, side='right')
match_res(mnp_x.searchsorted, x.searchsorted, y, sorter=sorter)
match_res(mnp_x.searchsorted, x.searchsorted, y, side='right', sorter=sorter)