mindspore/tests/st/ops/gpu/test_erf_op.py

58 lines
1.7 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from scipy import special
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class NetErf(nn.Cell):
def __init__(self):
super(NetErf, self).__init__()
self.erf = P.Erf()
def construct(self, x):
return self.erf(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_erf_fp32():
erf = NetErf()
x = np.random.rand(3, 8).astype(np.float32)
output = erf(Tensor(x, dtype=dtype.float32))
expect = special.erf(x)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect) < tol).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_erf_fp16():
erf = NetErf()
x = np.random.rand(3, 8).astype(np.float16)
output = erf(Tensor(x, dtype=dtype.float16))
expect = special.erf(x)
tol = 1e-3
assert (np.abs(output.asnumpy() - expect) < tol).all()