mindspore/tests/st/ops/gpu/test_argmax_op.py

63 lines
2.2 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
class NetArgmax(nn.Cell):
def __init__(self):
super(NetArgmax, self).__init__()
axis1 = 0
axis2 = -1
self.argmax1 = P.Argmax(axis1, output_type=mstype.int32)
self.argmax2 = P.Argmax(axis2, output_type=mstype.int32)
self.argmax3 = P.Argmax(output_type=mstype.int32)
def construct(self, x):
return (self.argmax1(x), self.argmax2(x), self.argmax3(x))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_argmax():
x = Tensor(np.array([[1., 20., 5.],
[67., 8., 9.],
[130., 24., 15.],
[0.3, -0.4, -15.]]).astype(np.float32))
expect1 = np.array([2, 2, 2]).astype(np.int32)
expect2 = np.array([1, 0, 0, 0]).astype(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
argmax = NetArgmax()
output = argmax(x)
assert (output[0].asnumpy() == expect1).all()
assert (output[1].asnumpy() == expect2).all()
assert (output[2].asnumpy() == expect2).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
argmax1 = NetArgmax()
output1 = argmax1(x)
assert (output1[0].asnumpy() == expect1).all()
assert (output1[1].asnumpy() == expect2).all()
assert (output1[2].asnumpy() == expect2).all()