forked from mindspore-Ecosystem/mindspore
155 lines
4.9 KiB
C++
155 lines
4.9 KiB
C++
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "core/session.h"
|
|
#include <grpcpp/grpcpp.h>
|
|
#include <string>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <memory>
|
|
#include <chrono>
|
|
|
|
#include "include/infer_log.h"
|
|
#include "serving/ms_service.grpc.pb.h"
|
|
#include "core/util/option_parser.h"
|
|
#include "core/version_control/version_controller.h"
|
|
#include "core/util/file_system_operation.h"
|
|
#include "core/serving_tensor.h"
|
|
|
|
using ms_serving::MSService;
|
|
using ms_serving::PredictReply;
|
|
using ms_serving::PredictRequest;
|
|
|
|
namespace mindspore {
|
|
namespace serving {
|
|
Status Session::CreatDeviceSession(const std::string &device, uint32_t device_id) {
|
|
session_ = inference::InferSession::CreateSession(device, device_id);
|
|
if (session_ == nullptr) {
|
|
MSI_LOG(ERROR) << "Creat Session Failed";
|
|
return FAILED;
|
|
}
|
|
device_type_ = device;
|
|
return SUCCESS;
|
|
}
|
|
|
|
Session &Session::Instance() {
|
|
static Session instance;
|
|
return instance;
|
|
}
|
|
|
|
Status Session::Predict(const PredictRequest &request, PredictReply &reply) {
|
|
try {
|
|
auto status = PredictInner(request, reply);
|
|
return status;
|
|
} catch (const std::bad_alloc &ex) {
|
|
MSI_LOG(ERROR) << "Serving Error: malloc memory failed";
|
|
std::cout << "Serving Error: malloc memory failed" << std::endl;
|
|
} catch (const std::runtime_error &ex) {
|
|
MSI_LOG(ERROR) << "Serving Error: runtime error occurred: " << ex.what();
|
|
std::cout << "Serving Error: runtime error occurred: " << ex.what() << std::endl;
|
|
} catch (const std::exception &ex) {
|
|
MSI_LOG(ERROR) << "Serving Error: exception occurred: " << ex.what();
|
|
std::cout << "Serving Error: exception occurred: " << ex.what() << std::endl;
|
|
} catch (...) {
|
|
MSI_LOG(ERROR) << "Serving Error: exception occurred";
|
|
std::cout << "Serving Error: exception occurred";
|
|
}
|
|
return FAILED;
|
|
}
|
|
|
|
Status Session::PredictInner(const PredictRequest &request, PredictReply &reply) {
|
|
if (!model_loaded_) {
|
|
MSI_LOG(ERROR) << "the model has not loaded";
|
|
return FAILED;
|
|
}
|
|
if (session_ == nullptr) {
|
|
MSI_LOG(ERROR) << "the inference session has not be initialized";
|
|
return FAILED;
|
|
}
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
MSI_LOG(INFO) << "run Predict";
|
|
|
|
if (request.images_size() > 0) {
|
|
ServingImagesRequest serving_images(request);
|
|
ServingRequest serving_request(request);
|
|
ServingReply serving_reply(reply);
|
|
Status ret = session_->ExecuteModel(graph_id_, serving_images, serving_request, serving_reply);
|
|
if (ret != SUCCESS) {
|
|
MSI_LOG(ERROR) << "execute model with images return failed";
|
|
return ret;
|
|
}
|
|
} else if (request.data_size() > 0) {
|
|
ServingRequest serving_request(request);
|
|
ServingReply serving_reply(reply);
|
|
Status ret = session_->ExecuteModel(graph_id_, serving_request, serving_reply);
|
|
if (ret != SUCCESS) {
|
|
MSI_LOG(ERROR) << "execute model with datas return failed";
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
MSI_LOG(INFO) << "run Predict finished";
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status Session::Warmup(const MindSporeModelPtr model) {
|
|
if (session_ == nullptr) {
|
|
MSI_LOG(ERROR) << "The CreatDeviceSession should be called, before warmup";
|
|
return FAILED;
|
|
}
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
std::string file_name = model->GetModelPath() + '/' + model->GetModelName();
|
|
model_loaded_ = false;
|
|
MSI_TIME_STAMP_START(LoadModelFromFile)
|
|
auto ret = session_->LoadModelFromFile(file_name, graph_id_);
|
|
MSI_TIME_STAMP_END(LoadModelFromFile)
|
|
if (ret != SUCCESS) {
|
|
MSI_LOG(ERROR) << "Load graph model failed, file name is " << file_name.c_str();
|
|
return ret;
|
|
}
|
|
model_loaded_ = true;
|
|
MSI_LOG(INFO) << "Session Warmup finished";
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status Session::Clear() {
|
|
if (session_ != nullptr) {
|
|
session_->UnloadModel(graph_id_);
|
|
session_->FinalizeEnv();
|
|
session_ = nullptr;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status Session::GetModelInputsInfo(std::vector<inference::InferTensor> &tensor_list) {
|
|
if (!model_loaded_) {
|
|
MSI_LOG(ERROR) << "the model has not loaded";
|
|
return FAILED;
|
|
}
|
|
if (session_ == nullptr) {
|
|
MSI_LOG(ERROR) << "the inference session has not be initialized";
|
|
return FAILED;
|
|
}
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
Status ret = session_->GetModelInputsInfo(graph_id_, &tensor_list);
|
|
if (ret != SUCCESS) {
|
|
MSI_LOG(ERROR) << "get model inputs info failed";
|
|
}
|
|
return ret;
|
|
}
|
|
} // namespace serving
|
|
} // namespace mindspore
|