forked from mindspore-Ecosystem/mindspore
282 lines
11 KiB
Python
282 lines
11 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
from mindspore import context
|
|
from mindspore.context import set_auto_parallel_context
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import operations as P
|
|
from mindspore import Tensor
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
import mindspore as ms
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
|
|
|
|
# model_parallel test
|
|
# export PARALLEL_CHECKPOINT_ON=on
|
|
# export PARALLEL_TRAIN_TIMES=4
|
|
def test_six_matmul():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x3, x4, x5, x6, x7):
|
|
predict = self.network(x1, x2, x3, x4, x5, x6, x7)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x3, x4, x5, x6, x7):
|
|
return C.grad_all(self.network)(x1, x2, x3, x4, x5, x6, x7)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul2 = P.MatMul().set_strategy(strategy2)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul().set_strategy(strategy6)
|
|
|
|
def construct(self, x1, x2, x3, x4, x5, x6, x7):
|
|
out = self.matmul1(x1, x2)
|
|
out = self.matmul2(out, x3)
|
|
out = self.matmul3(out, x4)
|
|
out = self.matmul4(out, x5)
|
|
out = self.matmul5(out, x6)
|
|
out = self.matmul6(out, x7)
|
|
return out
|
|
|
|
set_auto_parallel_context(device_num=512, global_rank=0)
|
|
strategy1 = ((8, 1), (1, 1))
|
|
strategy2 = ((1, 8), (8, 1))
|
|
strategy3 = ((2, 2), (2, 2))
|
|
strategy4 = ((4, 2), (2, 4))
|
|
strategy5 = ((2, 4), (4, 2))
|
|
strategy6 = ((4, 4), (4, 4))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
x3 = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
|
|
x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x2, x3, x4, x5, x6, x7)
|
|
|
|
# remove matmul2
|
|
def test_six_matmul_repeated1():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7):
|
|
predict = self.network(x1, x2, x4, x5, x6, x7)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7):
|
|
return C.grad_all(self.network)(x1, x2, x4, x5, x6, x7)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul().set_strategy(strategy6)
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7):
|
|
out = self.matmul1(x1, x2)
|
|
out = self.matmul3(out, x4)
|
|
out = self.matmul4(out, x5)
|
|
out = self.matmul5(out, x6)
|
|
out = self.matmul6(out, x7)
|
|
return out
|
|
|
|
set_auto_parallel_context(device_num=512, global_rank=0)
|
|
strategy1 = ((8, 1), (1, 1))
|
|
strategy3 = ((8, 1), (1, 1))
|
|
strategy4 = ((8, 1), (1, 1))
|
|
strategy5 = ((8, 1), (1, 1))
|
|
strategy6 = ((8, 1), (1, 1))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
|
|
x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x2, x4, x5, x6, x7)
|
|
|
|
# add matmul7
|
|
def test_six_matmul_repeated2():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7, x8):
|
|
predict = self.network(x1, x2, x4, x5, x6, x7, x8)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7, x8):
|
|
return C.grad_all(self.network)(x1, x2, x4, x5, x6, x7, x8)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul().set_strategy(strategy6)
|
|
self.matmul7 = P.MatMul().set_strategy(strategy7)
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7, x8):
|
|
out = self.matmul1(x1, x2)
|
|
out = self.matmul3(out, x4)
|
|
out = self.matmul4(out, x5)
|
|
out = self.matmul5(out, x6)
|
|
out = self.matmul6(out, x7)
|
|
out = self.matmul7(out, x8)
|
|
return out
|
|
|
|
set_auto_parallel_context(device_num=512, global_rank=0)
|
|
strategy1 = ((8, 1), (1, 1))
|
|
strategy3 = ((8, 1), (1, 1))
|
|
strategy4 = ((8, 1), (1, 1))
|
|
strategy5 = ((8, 1), (1, 1))
|
|
strategy6 = ((8, 1), (1, 1))
|
|
strategy7 = ((8, 1), (1, 1))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
|
|
x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
x8 = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x2, x4, x5, x6, x7, x8)
|
|
|
|
|
|
# add scope2
|
|
def test_six_matmul_repeated3():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network1, network2):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network1
|
|
self.network2 = network2
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7, x8, x9, x10):
|
|
predict = self.network(x1, x2, x4, x5, x6, x7, x8)
|
|
predict = self.network2(predict, x9, x10)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7, x8, x9, x10):
|
|
return C.grad_all(self.network)(x1, x2, x4, x5, x6, x7, x8, x9, x10)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul3 = P.MatMul().set_strategy(strategy3)
|
|
self.matmul4 = P.MatMul().set_strategy(strategy4)
|
|
self.matmul5 = P.MatMul().set_strategy(strategy5)
|
|
self.matmul6 = P.MatMul().set_strategy(strategy6)
|
|
self.matmul7 = P.MatMul().set_strategy(strategy7)
|
|
|
|
def construct(self, x1, x2, x4, x5, x6, x7, x8):
|
|
out = self.matmul1(x1, x2)
|
|
out = self.matmul3(out, x4)
|
|
out = self.matmul4(out, x5)
|
|
out = self.matmul5(out, x6)
|
|
out = self.matmul6(out, x7)
|
|
out = self.matmul7(out, x8)
|
|
return out
|
|
|
|
class Net1(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().set_strategy(strategy1)
|
|
self.matmul2 = P.MatMul().set_strategy(strategy2)
|
|
|
|
def construct(self, x1, x2, x3):
|
|
out = self.matmul1(x1, x2)
|
|
out = self.matmul2(out, x3)
|
|
return out
|
|
|
|
|
|
set_auto_parallel_context(device_num=512, global_rank=0)
|
|
strategy1 = ((8, 1), (1, 1))
|
|
strategy3 = ((8, 1), (1, 1))
|
|
strategy4 = ((8, 1), (1, 1))
|
|
strategy5 = ((8, 1), (1, 1))
|
|
strategy6 = ((8, 1), (1, 1))
|
|
strategy7 = ((8, 1), (1, 1))
|
|
strategy8 = ((8, 1), (1, 1))
|
|
strategy9 = ((8, 1), (1, 1))
|
|
net1 = Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)
|
|
net2 = Net1(strategy8, strategy9)
|
|
net = GradWrap(NetWithLoss(net1, net2))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
|
|
x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
|
x8 = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
|
x9 = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
x10 = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
_executor.compile(net, x1, x2, x4, x5, x6, x7, x8, x9, x10)
|
|
|