mindspore/tests/ut/python/pipeline/infer/test_net_infer.py

129 lines
3.8 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_net_infer """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
import mindspore.ops.operations as op
def test_net_infer():
""" test_net_infer """
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
self.bn = nn.BatchNorm2d(64)
self.fc = nn.Dense(64, 10)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv(x)
x = self.relu(x)
x = self.flatten(x)
out = self.fc(x)
return out
Tensor(np.random.randint(0, 255, [1, 3, 224, 224]))
Net()
def test_assign_in_while():
context.set_context(device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self, input_shape):
super().__init__()
self.assign = op.Assign()
self.inputdata = Parameter(initializer(1, input_shape), name="global_step")
def construct(self, x, y, z):
out = z
while x < y:
inputdata = self.inputdata
x = x + 1
out = self.assign(inputdata, z)
return out
x = Tensor(np.array(1).astype(np.int32))
y = Tensor(np.array(3).astype(np.int32))
input_shape = (1024, 512)
z = Tensor(np.random.randn(*input_shape).astype(np.float32))
net = Net(input_shape)
net(x, y, z)
def test_dup_context():
''' different func_with_fv in net1 and net2 should produce 2 different FuncGraphAbstractClosure and
Evaluator.
'''
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x):
def identity(f):
return f
def func_with_fv():
return x
def net1():
local_func = identity(func_with_fv)
out = local_func() + 20.0
return out
def net2():
local_func = identity(func_with_fv)
out = local_func() + 15.0
return out
return net1() + net2()
Net()(5.0)
def test_maybe_poly_func():
''' different func_with_fv in net1 and net2 may produce poly node. '''
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y, z):
def identity(f, inp):
return f(inp)
def func_with_fv(yy):
return (x, yy)
def make_call():
out1 = identity(func_with_fv, y)
out2 = identity(func_with_fv, z)
return (out1, out2)
return make_call()
y_input = Tensor(np.array([1, 2]).astype(np.int32))
z_input = Tensor(np.array([[2, 2], [3, 3]]).astype(np.int32))
Net()(1, y_input, z_input)