mindspore/tests/st/ops/graph_kernel/test_lamb.py

145 lines
5.4 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore.context as context
from mindspore import Tensor, Parameter
from mindspore.nn import Cell
from mindspore.nn.graph_kernels import LambUpdateWithLR, LambNextMV
class LambNet(Cell):
def __init__(self, i2, i5, x6):
super(LambNet, self).__init__()
self.i2 = Parameter(i2, name='i2')
self.i5 = Parameter(i5, name='i5')
self.x6 = Parameter(x6, name='x6')
self.lamb_next = LambNextMV()
self.lamb_update = LambUpdateWithLR()
def construct(self, i1, i3, i4, i6, i7, i8, i9, ix0, ix1, ix2, ix3,
x1, x2, x3, x4, x5, gy, se, my):
i1_ = i1 + i3
return self.lamb_next(i1_, self.i2, i3, i4, self.i5, i6, i7, i8, i9, ix0,
ix1, ix2, ix3), \
self.lamb_update(x1, x2, x3, x4, x5, self.x6, gy, se, my)
def LambUpdateNumpy(x1, x2, x3, x4, x5, x6, gy, se, my):
trust_ratio = np.where(np.greater(x2, gy),
np.where(np.greater(x1, gy), np.divide(x2, x3), se),
se)
trust_ratio = np.maximum(np.minimum(trust_ratio, my), gy)
update_with_lr = trust_ratio * x4 * x5
next_param = x6 - np.reshape(update_with_lr, x6.shape)
return next_param
def LambNextMVNumpy(i1, i2, i3, i4, i5, i6, i7, i8, i9, x0, x1, x2, x3):
m_fp32 = i5.astype(np.float32)
v_fp32 = i2.astype(np.float32)
next_m = i8 * m_fp32 + i9 * i4
next_v = x0 * v_fp32 + x1 * i1
next_mm = next_m / i6
next_vv = next_v / i3
update = next_mm / (np.sqrt(next_vv) + x3)
add3 = next_mm / np.sqrt(next_vv + x3) + x2 * i7
return add3, next_m, next_v, update
def tensor_all(*args):
res = [Tensor(a) for a in args]
return res
def test_graph_kernel_lamb():
shape = [1, 16]
oshape = [1]
np.random.seed(0)
x1 = np.random.normal(0, 1, oshape).astype(np.float32)
x2 = np.random.normal(0, 1, oshape).astype(np.float32)
x3 = np.random.normal(0, 1, oshape).astype(np.float32)
x4 = np.random.normal(0, 1, oshape).astype(np.float32)
x5 = np.random.normal(0, 1, shape).astype(np.float32)
x6 = np.random.normal(0, 1, shape).astype(np.float32)
gy = np.random.normal(0, 1, oshape).astype(np.float32)
se = np.random.normal(0, 1, oshape).astype(np.float32)
my = np.random.normal(0, 1, oshape).astype(np.float32)
tx1, tx2, tx3, tx4, tx5, tx6, tgy, tse, tmy = tensor_all(
x1, x2, x3, x4, x5, x6, gy, se, my)
np.random.seed(1)
i1 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
i2 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
i3 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
i4 = np.random.normal(0, 1, shape).astype(np.float32)
i5 = np.random.normal(0, 1, shape).astype(np.float32)
i6 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
i7 = np.random.normal(0, 1, shape).astype(np.float32)
i8 = np.random.normal(0, 1, shape).astype(np.float32)
i9 = np.random.normal(0, 1, shape).astype(np.float32)
ix0 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
ix1 = np.abs(np.random.normal(0, 1, shape)).astype(np.float32)
ix2 = np.random.normal(0, 1, shape).astype(np.float32)
ix3 = np.ones(shape).astype(np.float32) * 1e-6
ti1, ti2, ti3, ti4, ti5, ti6, ti7, ti8, ti9, tix0, tix1, tix2, tix3 = \
tensor_all(i1, i2, i3, i4, i5, i6, i7, i8, i9, ix0, ix1, ix2, ix3)
context.set_context(enable_graph_kernel=True)
net = LambNet(ti2, ti5, tx6)
(wa3, wup), _ = net(ti1, ti3, ti4, ti6, ti7, ti8, ti9, tix0, tix1, tix2, tix3,
tx1, tx2, tx3, tx4, tx5, tgy, tse, tmy)
wi2 = net.i2.data.asnumpy().copy()
wi5 = net.i5.data.asnumpy().copy()
ares = net.x6.data.asnumpy().copy()
context.set_context(enable_graph_kernel=False)
i1_ = i1 + i3
a3, a0, a1, up = LambNextMVNumpy(i1_, i2, i3, i4, i5, i6, i7, i8, i9, ix0,
ix1, ix2, ix3)
np_res = LambUpdateNumpy(x1, x2, x3, x4, x5, x6, gy, se, my)
rtol = 0.0001
atol = 0.0001
wres = (wa3.asnumpy().copy(), wi5, wi2, wup.asnumpy().copy())
bres = (a3, a0, a1, up)
cmp_res = list(map(lambda x, y: np.allclose(x, y, rtol, atol),
wres, bres))
assert all(cmp_res) and np.allclose(ares, np_res, rtol, atol)
def test_graph_kernel_lamb_gpu():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
test_graph_kernel_lamb()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_graph_kernel_lamb_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_graph_kernel_lamb()