mindspore/tests/st/ops/cpu/test_gather_op.py

108 lines
3.6 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import mindspore.context as context
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class NetGatherV2_axis0(nn.Cell):
def __init__(self):
super(NetGatherV2_axis0, self).__init__()
self.gatherv2 = P.GatherV2()
def construct(self, params, indices):
return self.gatherv2(params, indices, 0)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_gatherv2_axis0():
x = Tensor(np.arange(3 * 2 * 2).reshape(3, 2, 2), mstype.float32)
indices = Tensor(np.array([1, 2]), mstype.int32)
gatherv2 = NetGatherV2_axis0()
ms_output = gatherv2(x, indices)
print("output:\n", ms_output)
expect = np.array([[[4., 5.],
[6., 7.]],
[[8., 9.],
[10., 11.]]])
error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
diff = ms_output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
class NetGatherV2_axis1(nn.Cell):
def __init__(self):
super(NetGatherV2_axis1, self).__init__()
self.gatherv2 = P.GatherV2()
def construct(self, params, indices):
return self.gatherv2(params, indices, 1)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_gatherv2_axis1():
x = Tensor(np.arange(2 * 3 * 2).reshape(2, 3, 2), mstype.float32)
indices = Tensor(np.array([1, 2]), mstype.int32)
gatherv2 = NetGatherV2_axis1()
ms_output = gatherv2(x, indices)
print("output:\n", ms_output)
expect = np.array([[[2., 3.],
[4., 5.]],
[[8., 9.],
[10., 11.]]])
error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
diff = ms_output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
class NetGatherV2_axisN1(nn.Cell):
def __init__(self):
super(NetGatherV2_axisN1, self).__init__()
self.gatherv2 = P.GatherV2()
def construct(self, params, indices):
return self.gatherv2(params, indices, -1)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_gatherv2_axisN1():
x = Tensor(np.arange(2 * 2 * 3).reshape(2, 2, 3), mstype.float32)
indices = Tensor(np.array([1, 2]), mstype.int32)
gatherv2 = NetGatherV2_axisN1()
ms_output = gatherv2(x, indices)
print("output:\n", ms_output)
expect = np.array([[[1., 2.],
[4., 5.]],
[[7., 8.],
[10., 11.]]])
error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
diff = ms_output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
if __name__ == '__main__':
test_gatherv2_axis0()
test_gatherv2_axis1()
test_gatherv2_axisN1()