mindspore/tests/st/sparse/test_csr.py

776 lines
29 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""smoke tests for CSR operations"""
import os
import pytest
import numpy as np
from mindspore import Tensor, CSRTensor, ms_function, nn, ops
from mindspore.common import dtype as mstype
from mindspore.train.serialization import export, load
from mindspore.ops import functional as F
from mindspore.ops.operations import _csr_ops
from .sparse_utils import get_platform, compare_res
def compare_csr(csr1, csr2):
assert isinstance(csr1, CSRTensor)
assert isinstance(csr2, CSRTensor)
assert (csr1.indptr.asnumpy() == csr2.indptr.asnumpy()).all()
assert (csr1.indices.asnumpy() == csr2.indices.asnumpy()).all()
assert (csr1.values.asnumpy() == csr2.values.asnumpy()).all()
assert csr1.shape == csr2.shape
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_make_csr():
"""
Feature: Test CSRTensor Constructor in Graph and PyNative.
Description: Test CSRTensor(indptr, indices, values, shape) and CSRTensor(CSRTensor)
Expectation: Success.
"""
if get_platform() != "linux":
return
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([1, 2], dtype=mstype.float32)
shape = (2, 6)
def test_pynative():
return CSRTensor(indptr, indices, values, shape)
test_graph = ms_function(test_pynative)
csr1 = test_pynative()
csr2 = test_graph()
compare_csr(csr1, csr2)
csr3 = CSRTensor(csr_tensor=csr2)
compare_csr(csr3, csr2)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_csr_attr():
"""
Feature: Test CSRTensor GetAttr in Graph and PyNative.
Description: Test CSRTensor.indptr, CSRTensor.indices, CSRTensor.values, CSRTensor.shape.
Expectation: Success.
"""
if get_platform() != "linux":
return
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([1, 2], dtype=mstype.float32)
shape = (2, 6)
csr = CSRTensor(indptr, indices, values, shape)
def test_pynative_1():
return csr.indptr, csr.indices
def test_pynative_2():
return csr.values, csr.shape
def test_pynative_3():
return csr.astype(mstype.int32)
def test_pynative_4():
return csr.to_tuple()
test_graph_1 = ms_function(test_pynative_1)
test_graph_2 = ms_function(test_pynative_2)
test_graph_3 = ms_function(test_pynative_3)
test_graph_4 = ms_function(test_pynative_4)
py_indptr, py_indices = test_pynative_1()
py_values, py_shape = test_pynative_2()
py_csr = test_pynative_3()
py_tuple = test_pynative_4()
g_indptr, g_indices = test_graph_1()
g_values, g_shape = test_graph_2()
g_csr = test_graph_3()
g_tuple = test_graph_4()
csr1 = CSRTensor(py_indptr, py_indices, py_values, py_shape)
csr2 = CSRTensor(g_indptr, g_indices, g_values, g_shape)
# check csr attr
compare_csr(csr1, csr2)
# check astype
compare_csr(py_csr, g_csr)
# check to_tuple
assert len(py_tuple) == len(g_tuple)
for i, _ in enumerate(py_tuple):
if isinstance(py_tuple[i], Tensor):
assert (py_tuple[i].asnumpy() == g_tuple[i].asnumpy()).all()
else:
assert py_tuple[i] == g_tuple[i]
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_csr_tensor_in_while():
"""
Feature: Test CSRTensor in while loop.
Description: Test CSRTensor computation in while loop.
Expectation: Success.
"""
class CSRTensorValuesDouble(nn.Cell):
def construct(self, x):
indptr = x.indptr
indices = x.indices
values = x.values * 2
shape = x.shape
return CSRTensor(indptr, indices, values, shape)
class CSRTensorValuesAdd2(nn.Cell):
def construct(self, x):
indptr = x.indptr
indices = x.indices
values = x.values + 2
shape = x.shape
return CSRTensor(indptr, indices, values, shape)
class CSRTensorWithControlWhile(nn.Cell):
def __init__(self, shape):
super(CSRTensorWithControlWhile, self).__init__()
self.op1 = CSRTensorValuesDouble()
self.op2 = CSRTensorValuesAdd2()
self.shape = shape
@ms_function
def construct(self, a, b, indptr, indices, values):
x = CSRTensor(indptr, indices, values, self.shape)
x = self.op2(x)
while a > b:
x = self.op1(x)
b = b + 1
return x
a = Tensor(3, mstype.int32)
b = Tensor(0, mstype.int32)
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([1, 2], dtype=mstype.float32)
shape = (2, 6)
net = CSRTensorWithControlWhile(shape)
out = net(a, b, indptr, indices, values)
assert np.allclose(out.indptr.asnumpy(), indptr.asnumpy(), .0, .0)
assert np.allclose(out.indices.asnumpy(), indices.asnumpy(), .0, .0)
assert np.allclose((values.asnumpy() + 2) * 8, out.values.asnumpy(), .0, .0)
assert shape == out.shape
# Test Export MindIR
file_name = "csrtensor_with_control_while_net"
export(net, a, b, indptr, indices, values, file_name=file_name, file_format="MINDIR")
mindir_name = file_name + ".mindir"
assert os.path.exists(mindir_name)
graph = load(mindir_name)
loaded_net = nn.GraphCell(graph)
outputs_after_load = loaded_net(a, b, indptr, indices, values)
assert np.allclose(out.indptr.asnumpy(), outputs_after_load.indptr.asnumpy())
assert np.allclose(out.indices.asnumpy(), outputs_after_load.indices.asnumpy())
assert np.allclose(out.values.asnumpy(), outputs_after_load.values.asnumpy())
assert out.shape == outputs_after_load.shape
@pytest.mark.level2
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_csr_tensor_in_while_cpu():
"""
Feature: Test CSRTensor in while loop.
Description: Test CSRTensor computation in while loop.
Expectation: Success.
"""
class CSRTensorValuesDouble(nn.Cell):
def construct(self, x):
indptr = x.indptr
indices = x.indices
values = x.values * 2
shape = x.shape
return CSRTensor(indptr, indices, values, shape)
class CSRTensorValuesAdd2(nn.Cell):
def construct(self, x):
indptr = x.indptr
indices = x.indices
values = x.values + 2
shape = x.shape
return CSRTensor(indptr, indices, values, shape)
class CSRTensorWithControlWhile(nn.Cell):
def __init__(self, shape):
super(CSRTensorWithControlWhile, self).__init__()
self.op1 = CSRTensorValuesDouble()
self.op2 = CSRTensorValuesAdd2()
self.shape = shape
@ms_function
def construct(self, a, b, indptr, indices, values):
x = CSRTensor(indptr, indices, values, self.shape)
x = self.op2(x)
while a > b:
x = self.op1(x)
b = b + 1
return x
a = Tensor(3, mstype.int32)
b = Tensor(0, mstype.int32)
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([1, 2], dtype=mstype.float32)
shape = (2, 6)
net = CSRTensorWithControlWhile(shape)
out = net(a, b, indptr, indices, values)
assert np.allclose(out.indptr.asnumpy(), indptr.asnumpy(), .0, .0)
assert np.allclose(out.indices.asnumpy(), indices.asnumpy(), .0, .0)
assert np.allclose((values.asnumpy() + 2) * 8, out.values.asnumpy(), .0, .0)
assert shape == out.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_batch_csr_ops():
"""
Feature: Test Batch CSR-related Ops.
Description: Test CSRReduceSum, CSRMul, CSRGather.
Expectation: Success.
"""
if get_platform() != "linux":
return
csr_gather = _csr_ops.CSRGather()
indptr = Tensor([0, 1, 1, 2, 2], dtype=mstype.int32)
indices = Tensor([0, 1], dtype=mstype.int32)
values = Tensor([[2, 1, 3], [2, 1, 3]], dtype=mstype.float32)
dense_shape = (4, 2, 3)
dense_tensor = Tensor(
[[[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]]],
dtype=mstype.float32)
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
def test_ops_pynative_gather():
dense = csr_gather(indptr, indices, dense_tensor, dense_shape)
return dense
def test_ops_pynative_reducesum():
dense = F.csr_reduce_sum(csr_tensor, 1)
return dense
def test_ops_pynative_sparse_elemwise():
sparse1 = csr_tensor * dense_tensor
sparse2 = csr_tensor / dense_tensor
return sparse1, sparse2
res_reducesum = test_ops_pynative_reducesum()
test_ops_graph_reducesum = ms_function(test_ops_pynative_reducesum)
graph_res_reducesum = test_ops_graph_reducesum()
expect1 = np.array([[2., 1., 3.]], dtype=np.float32)
expect2 = np.array([[2., 1., 3.]], dtype=np.float32)
assert np.allclose(res_reducesum[0].asnumpy(), expect1)
assert np.allclose(res_reducesum[2].asnumpy(), expect2)
assert np.allclose(graph_res_reducesum[0].asnumpy(), expect1)
assert np.allclose(graph_res_reducesum[2].asnumpy(), expect2)
res_elemwise = test_ops_pynative_sparse_elemwise()
test_ops_graph_elemwise = ms_function(test_ops_pynative_sparse_elemwise)
graph_res_elemwise = test_ops_graph_elemwise()
expect3 = np.array([[2., 1., 3.], [4., 2., 6.]], dtype=np.float32)
expect4 = np.array([[2., 1., 3.], [1., 0.5, 1.5]], dtype=np.float32)
assert np.allclose(res_elemwise[0].values.asnumpy(), expect3)
assert np.allclose(res_elemwise[1].values.asnumpy(), expect4)
assert np.allclose(graph_res_elemwise[0].values.asnumpy(), expect3)
assert np.allclose(graph_res_elemwise[1].values.asnumpy(), expect4)
expect5 = np.array([1., 1.], dtype=np.float32)
res_gather = test_ops_pynative_gather()
test_ops_graph_gather = ms_function(test_ops_pynative_gather)
graph_res_gather = test_ops_graph_gather()
assert np.allclose(res_gather.asnumpy(), expect5)
assert np.allclose(graph_res_gather.asnumpy(), expect5)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_csr_ops():
"""
Feature: Test CSR-related Ops.
Description: Test CSRReduceSum, CSRMul, CSRMV.
Expectation: Success.
"""
if get_platform() != "linux":
return
indptr = Tensor([0, 1, 2], dtype=mstype.int32)
indices = Tensor([0, 1], dtype=mstype.int32)
values = Tensor([2, 1], dtype=mstype.float32)
dense_shape = (2, 4)
dense_tensor = Tensor([[1., 1, 1, 1], [1, 1, 1, 1]], dtype=mstype.float32)
dense_vector = Tensor([[1.], [1], [1], [1]], dtype=mstype.float32)
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
def test_ops_pynative_dense():
dense1 = F.csr_reduce_sum(csr_tensor, 1)
dense2 = F.csr_mv(csr_tensor, dense_vector)
return dense1, dense2
def test_ops_pynative_sparse():
sparse1 = csr_tensor * dense_tensor
sparse2 = dense_tensor * csr_tensor
sparse3 = csr_tensor / dense_tensor
return sparse1, sparse2, sparse3
test_ops_graph_dense = ms_function(test_ops_pynative_dense)
test_ops_graph_sparse = ms_function(test_ops_pynative_sparse)
pynative_res_dense = test_ops_pynative_dense()
graph_res_dense = test_ops_graph_dense()
expect1 = np.array([[2.], [1.]], dtype=np.float32)
expect2 = np.array([[2.], [1.]], dtype=np.float32)
assert np.allclose(pynative_res_dense[0].asnumpy(), expect1)
assert np.allclose(pynative_res_dense[1].asnumpy(), expect2)
assert np.allclose(graph_res_dense[0].asnumpy(), expect1)
assert np.allclose(graph_res_dense[1].asnumpy(), expect2)
pynative_res_sparse = test_ops_pynative_sparse()
graph_res_sparse = test_ops_graph_sparse()
expect3 = np.array([2., 1.], dtype=np.float32)
assert np.allclose(pynative_res_sparse[0].values.asnumpy(), expect3)
assert np.allclose(pynative_res_sparse[1].values.asnumpy(), expect3)
assert np.allclose(pynative_res_sparse[2].values.asnumpy(), expect3)
assert np.allclose(graph_res_sparse[0].values.asnumpy(), expect3)
assert np.allclose(graph_res_sparse[1].values.asnumpy(), expect3)
assert np.allclose(graph_res_sparse[2].values.asnumpy(), expect3)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_csrtensor_export_and_import_mindir():
"""
Feature: Test exporting and loading CSRTensor MindIR.
Description: Test export and load.
Expectation: Success.
"""
if get_platform() != "linux":
return
class TestCSRTensor(nn.Cell):
def __init__(self, shape):
super(TestCSRTensor, self).__init__()
self.shape = shape
def construct(self, indptr, indices, values):
return CSRTensor(indptr, indices, values, self.shape)
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([2, 1], dtype=mstype.float32)
shape = (2, 4)
net = TestCSRTensor(shape)
file_name = "csrtensor_net"
export(net, indptr, indices, values, file_name=file_name, file_format="MINDIR")
mindir_name = file_name + ".mindir"
assert os.path.exists(mindir_name)
out = net(indptr, indices, values)
graph = load(mindir_name)
loaded_net = nn.GraphCell(graph)
outputs_after_load = loaded_net(indptr, indices, values)
assert np.allclose(out.indptr.asnumpy(), outputs_after_load.indptr.asnumpy())
assert np.allclose(out.indices.asnumpy(), outputs_after_load.indices.asnumpy())
assert np.allclose(out.values.asnumpy(), outputs_after_load.values.asnumpy())
assert out.shape == outputs_after_load.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_csrops_export_and_import_mindir():
"""
Feature: Test exporting and loading CSRTensor MindIR in a net.
Description: Test export and load.
Expectation: Success.
"""
class TestCSRNet(nn.Cell):
def __init__(self, shape):
super(TestCSRNet, self).__init__()
self.shape = shape
def construct(self, indptr, indices, values, dence_tensor, dense_vector):
csr_tensor = CSRTensor(indptr, indices, values, self.shape)
dense1 = F.csr_reduce_sum(csr_tensor, 1)
dense2 = F.csr_mv(csr_tensor, dense_vector)
dense3 = dense1 * dense2
sparse1 = csr_tensor * dence_tensor
sparse2 = dence_tensor * csr_tensor
return dense1, dense2, dense3, sparse1, sparse2
indptr = Tensor([0, 1, 2], dtype=mstype.int32)
indices = Tensor([0, 1], dtype=mstype.int32)
values = Tensor([2, 1], dtype=mstype.float32)
shape = (2, 4)
dense_tensor = Tensor([[1., 1, 1, 1], [1, 1, 1, 1]], dtype=mstype.float32)
dense_vector = Tensor([[1.], [1], [1], [1]], dtype=mstype.float32)
net = TestCSRNet(shape)
file_name = "csrops_net"
export(net, indptr, indices, values, dense_tensor, dense_vector, file_name=file_name, file_format="MINDIR")
mindir_name = file_name + ".mindir"
assert os.path.exists(mindir_name)
out = net(indptr, indices, values, dense_tensor, dense_vector)
expect0 = np.array([[2.], [1.]], dtype=np.float32)
expect1 = np.array([[2.], [1.]], dtype=np.float32)
expect2 = np.array([[4.], [1.]], dtype=np.float32)
expect3 = np.array([2., 1.], dtype=np.float32)
assert np.allclose(out[0].asnumpy(), expect0)
assert np.allclose(out[1].asnumpy(), expect1)
assert np.allclose(out[2].asnumpy(), expect2)
assert np.allclose(out[3].values.asnumpy(), expect3)
assert np.allclose(out[4].values.asnumpy(), expect3)
graph = load(mindir_name)
loaded_net = nn.GraphCell(graph)
outputs_after_load = loaded_net(indptr, indices, values, dense_tensor, dense_vector)
assert np.allclose(out[0].asnumpy(), outputs_after_load[0].asnumpy())
assert np.allclose(out[1].asnumpy(), outputs_after_load[1].asnumpy())
assert np.allclose(out[2].asnumpy(), outputs_after_load[2].asnumpy())
assert np.allclose(out[3].values.asnumpy(), outputs_after_load[3].values.asnumpy())
assert np.allclose(out[4].values.asnumpy(), outputs_after_load[4].values.asnumpy())
assert out[3].shape == outputs_after_load[3].shape
assert out[4].shape == outputs_after_load[4].shape
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_isinstance_csr_tensor():
"""
Feature: Test isinstance.
Description: Test: isinstance(x, CSRTensor).
Expectation: Success.
"""
if get_platform() != "linux":
return
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([2, 1], dtype=mstype.float32)
shape = (2, 4)
def pynative_test_csr_tensor():
x = CSRTensor(indptr, indices, values, shape)
# Test input CSRTensor
is_tensor = isinstance(x, Tensor)
is_bool = isinstance(x, bool)
is_float = isinstance(x, float)
is_tuple = isinstance(x, (Tensor, CSRTensor, int, float))
is_csr_tensor = isinstance(x, CSRTensor)
# Test input Tensor
is_tensor_2 = isinstance(indptr, CSRTensor)
is_tuple_2 = isinstance(indptr, (Tensor, CSRTensor))
return is_tensor, is_bool, is_float, is_tuple, is_csr_tensor, is_tensor_2, is_tuple_2
graph_test_csr_tensor = ms_function(pynative_test_csr_tensor)
out1 = pynative_test_csr_tensor()
out2 = graph_test_csr_tensor()
assert out1 == (False, False, False, True, True, False, True)
assert out2 == (False, False, False, True, True, False, True)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_dtype_csr_tensor():
"""
Feature: Test F.dtype with CSRTensor.
Description: Test: F.dtype(x).
Expectation: Success.
"""
if get_platform() != "linux":
return
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([2, 1], dtype=mstype.float32)
shape = (2, 4)
def pynative_test():
x = CSRTensor(indptr, indices, values, shape)
return F.dtype(x), x.dtype
graph_test = ms_function(pynative_test)
out1, out2 = pynative_test()
out3, out4 = graph_test()
assert out1 in [mstype.float32]
assert out2 in [mstype.float32]
assert out3 in [mstype.float32]
assert out4 in [mstype.float32]
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_bprop():
"""
Feature: Test back-propagation with CSR-related Ops.
Description: Test CSRReduceSum, CSRMul, CSRDiv, CSRMV, CSRTensor.to_coo(), CSRTensor.to_dense().
Expectation: Success.
"""
if get_platform() != "linux":
return
grad_op = ops.GradOperation(get_all=True)
@grad_op
@ms_function
def test_csr_mul(indptr, indices, values, shape, dense):
csr_tensor = CSRTensor(indptr, indices, values, shape)
return csr_tensor * dense
@grad_op
@ms_function
def test_csr_div(indptr, indices, values, shape, dense):
csr_tensor = CSRTensor(indptr, indices, values, shape)
return csr_tensor / dense
@grad_op
@ms_function
def test_csr_reduce_sum(indptr, indices, values, shape, axis):
csr_tensor = CSRTensor(indptr, indices, values, shape)
return F.csr_reduce_sum(csr_tensor, axis)
@grad_op
@ms_function
def test_csrmv(indptr, indices, values, shape, dense):
csr_tensor = CSRTensor(indptr, indices, values, shape)
return F.csr_mv(csr_tensor, dense)
indptr = Tensor([0, 1, 4, 6], dtype=mstype.int32)
indices = Tensor([3, 0, 1, 2, 1, 3], dtype=mstype.int32)
values = Tensor(np.arange(6), dtype=mstype.float32)
dense_shape = (3, 4)
csr_mv_arg = Tensor([[1], [2], [3], [4]], dtype=mstype.float32)
csr_mv_expect_1 = np.array([4, 1, 2, 3, 2, 4], dtype=np.float32)
csr_mv_expect_2 = np.array([[1], [6], [3], [5]], dtype=np.float32)
csr_mv_output = test_csrmv(indptr, indices, values, dense_shape, csr_mv_arg)
# indptr, indices, values, dense_grad
assert len(csr_mv_output) == 4
assert np.allclose(csr_mv_output[2].asnumpy(), csr_mv_expect_1)
assert np.allclose(csr_mv_output[3].asnumpy(), csr_mv_expect_2)
csr_reduce_sum_expect_1 = np.ones(6, dtype=np.float32)
csr_reduce_sum_output_1 = test_csr_reduce_sum(indptr, indices, values, dense_shape, 1)
assert len(csr_reduce_sum_output_1) == 3
assert np.allclose(csr_reduce_sum_output_1[2].asnumpy(), csr_reduce_sum_expect_1)
csr_mul_arg_1 = Tensor([[1], [2], [3]], dtype=mstype.float32)
csr_mul_expect_1_1 = np.array([1, 2, 2, 2, 3, 3], dtype=np.float32)
csr_mul_expect_1_2 = np.array([[0], [6], [9]], dtype=np.float32)
csr_mul_output_1 = test_csr_mul(indptr, indices, values, dense_shape, csr_mul_arg_1)
assert len(csr_mul_output_1) == 4
assert np.allclose(csr_mul_output_1[2].asnumpy(), csr_mul_expect_1_1)
assert np.allclose(csr_mul_output_1[3].asnumpy(), csr_mul_expect_1_2)
csr_mul_arg_2 = Tensor(np.arange(12).reshape(3, 4), dtype=mstype.float32)
csr_mul_expect_2_1 = np.array([3, 4, 5, 6, 9, 11], dtype=np.float32)
csr_mul_expect_2_2 = np.array([[0, 0, 0, 0], [1, 2, 3, 0], [0, 4, 0, 5]], np.float32)
csr_mul_output_2 = test_csr_mul(indptr, indices, values, dense_shape, csr_mul_arg_2)
assert len(csr_mul_output_2) == 4
assert np.allclose(csr_mul_output_2[2].asnumpy(), csr_mul_expect_2_1)
assert np.allclose(csr_mul_output_2[3].asnumpy(), csr_mul_expect_2_2)
csr_div_expect_1_1 = np.array([1, 0.5, 0.5, 0.5, 0.3333333, 0.3333333], dtype=np.float32)
csr_div_expect_1_2 = np.array([[0], [-1.5], [-1]], dtype=np.float32)
csr_div_arg_1 = Tensor([[1], [2], [3]], dtype=mstype.float32)
csr_div_output_1 = test_csr_div(indptr, indices, values, dense_shape, csr_div_arg_1)
assert len(csr_div_output_1) == 4
assert np.allclose(csr_div_output_1[2].asnumpy(), csr_div_expect_1_1)
assert np.allclose(csr_div_output_1[3].asnumpy(), csr_div_expect_1_2)
csr_div_arg_2 = Tensor(np.arange(1, 13).reshape(3, 4), dtype=mstype.float32)
csr_div_expect_2_1 = np.array([0.25, 0.2, 0.16666667, 0.14285715, 0.1, 0.0833333], dtype=np.float32)
csr_div_expect_2_2 = np.array(
[[0, 0, 0, 0], [-0.04, -0.05555556, -0.06122449, 0], [0, -0.04, 0, -0.03472222]], dtype=np.float32)
csr_div_output_2 = test_csr_div(indptr, indices, values, dense_shape, csr_div_arg_2)
assert len(csr_div_output_2) == 4
assert np.allclose(csr_div_output_2[2].asnumpy(), csr_div_expect_2_1)
assert np.allclose(csr_div_output_2[3].asnumpy(), csr_div_expect_2_2)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_csr_method():
"""
Feature: Test csr tensor methods.
Description: Test csr_tensor.to_coo(), csr_tensor.to_dense().
Expectation: Success.
"""
if get_platform() != "linux":
return
class CSRToCOONet(nn.Cell):
def construct(self, csr_tensor):
return csr_tensor.to_coo()
class CSRToDenseNet(nn.Cell):
def construct(self, csr_tensor):
return csr_tensor.to_dense()
indptr = Tensor([0, 1, 4, 6], dtype=mstype.int32)
indices = Tensor([3, 0, 1, 2, 1, 3], dtype=mstype.int32)
values = Tensor(np.arange(6), dtype=mstype.float32)
dense_shape = (3, 4)
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
to_coo_output = CSRToCOONet()(csr_tensor)
to_coo_expect_1 = np.array([[0, 3], [1, 0], [1, 1], [1, 2], [2, 1], [2, 3]], dtype=np.int32)
to_coo_expect_2 = np.arange(6).astype(np.float32)
assert np.allclose(to_coo_output.indices.asnumpy(), to_coo_expect_1)
assert np.allclose(to_coo_output.values.asnumpy(), to_coo_expect_2)
to_dense_output = CSRToDenseNet()(csr_tensor)
to_dense_expect = np.array([[0, 0, 0, 0], [1, 2, 3, 0], [0, 4, 0, 5]], np.float32)
assert np.allclose(to_dense_output.asnumpy(), to_dense_expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_bprop2():
"""
Feature: Test back-propagation with CSR-related Ops.
Description: Test back-propagation of make_csr, csr.attributes, csr.methods().
Expectation: Success.
"""
if get_platform() != "linux":
return
grad_op = ops.GradOperation(get_all=True)
indptr = Tensor([0, 1, 4, 6], dtype=mstype.int32)
indices = Tensor([3, 0, 1, 2, 1, 3], dtype=mstype.int32)
values = Tensor(np.arange(6) - 3.5, dtype=mstype.float32)
dense_shape = (3, 4)
@grad_op
@ms_function
def test_csr_tensor(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor
@grad_op
@ms_function
def test_csr_indptr(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.indptr
@grad_op
@ms_function
def test_csr_indices(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.indices
@grad_op
@ms_function
def test_csr_values(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.values
@grad_op
@ms_function
def test_csr_shape(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.shape
@grad_op
@ms_function
def test_csr_cast(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.astype(mstype.int32)
@grad_op
@ms_function
def test_csr_dtype(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.dtype
@grad_op
@ms_function
def test_csr_to_tuple(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.to_tuple()
@grad_op
@ms_function
def test_csr_to_abs(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.abs()
@grad_op
@ms_function
def test_csr_to_coo(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.to_coo()
@grad_op
@ms_function
def test_csr_to_dense(indptr, indices, values, dense_shape):
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
return csr_tensor.to_dense()
all_zero = (np.zeros(indptr.shape, np.int32), np.zeros(indices.shape, np.int32), np.zeros(values.shape, np.float32))
values_on = (np.zeros(indptr.shape, np.int32), np.zeros(indices.shape, np.int32), np.ones(values.shape, np.float32))
values_absgrad = (np.zeros(indptr.shape, np.int32), np.zeros(indices.shape, np.int32), np.sign(values.asnumpy()))
compare_res(test_csr_tensor(indptr, indices, values, dense_shape), values_on)
compare_res(test_csr_indptr(indptr, indices, values, dense_shape), all_zero)
compare_res(test_csr_indices(indptr, indices, values, dense_shape), all_zero)
compare_res(test_csr_values(indptr, indices, values, dense_shape), values_on)
compare_res(test_csr_cast(indptr, indices, values, dense_shape), values_on)
compare_res(test_csr_shape(indptr, indices, values, dense_shape), all_zero)
compare_res(test_csr_dtype(indptr, indices, values, dense_shape), all_zero)
compare_res(test_csr_to_tuple(indptr, indices, values, dense_shape), values_on)
compare_res(test_csr_to_abs(indptr, indices, values, dense_shape), values_absgrad)
compare_res(test_csr_to_coo(indptr, indices, values, dense_shape), values_on)
compare_res(test_csr_to_dense(indptr, indices, values, dense_shape), values_on)