forked from mindspore-Ecosystem/mindspore
776 lines
29 KiB
Python
776 lines
29 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""smoke tests for CSR operations"""
|
|
|
|
import os
|
|
import pytest
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, CSRTensor, ms_function, nn, ops
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.train.serialization import export, load
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops.operations import _csr_ops
|
|
|
|
from .sparse_utils import get_platform, compare_res
|
|
|
|
|
|
def compare_csr(csr1, csr2):
|
|
assert isinstance(csr1, CSRTensor)
|
|
assert isinstance(csr2, CSRTensor)
|
|
assert (csr1.indptr.asnumpy() == csr2.indptr.asnumpy()).all()
|
|
assert (csr1.indices.asnumpy() == csr2.indices.asnumpy()).all()
|
|
assert (csr1.values.asnumpy() == csr2.values.asnumpy()).all()
|
|
assert csr1.shape == csr2.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_make_csr():
|
|
"""
|
|
Feature: Test CSRTensor Constructor in Graph and PyNative.
|
|
Description: Test CSRTensor(indptr, indices, values, shape) and CSRTensor(CSRTensor)
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([1, 2], dtype=mstype.float32)
|
|
shape = (2, 6)
|
|
def test_pynative():
|
|
return CSRTensor(indptr, indices, values, shape)
|
|
test_graph = ms_function(test_pynative)
|
|
|
|
csr1 = test_pynative()
|
|
csr2 = test_graph()
|
|
compare_csr(csr1, csr2)
|
|
csr3 = CSRTensor(csr_tensor=csr2)
|
|
compare_csr(csr3, csr2)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_csr_attr():
|
|
"""
|
|
Feature: Test CSRTensor GetAttr in Graph and PyNative.
|
|
Description: Test CSRTensor.indptr, CSRTensor.indices, CSRTensor.values, CSRTensor.shape.
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([1, 2], dtype=mstype.float32)
|
|
shape = (2, 6)
|
|
csr = CSRTensor(indptr, indices, values, shape)
|
|
|
|
def test_pynative_1():
|
|
return csr.indptr, csr.indices
|
|
|
|
def test_pynative_2():
|
|
return csr.values, csr.shape
|
|
|
|
def test_pynative_3():
|
|
return csr.astype(mstype.int32)
|
|
|
|
def test_pynative_4():
|
|
return csr.to_tuple()
|
|
|
|
test_graph_1 = ms_function(test_pynative_1)
|
|
test_graph_2 = ms_function(test_pynative_2)
|
|
test_graph_3 = ms_function(test_pynative_3)
|
|
test_graph_4 = ms_function(test_pynative_4)
|
|
|
|
py_indptr, py_indices = test_pynative_1()
|
|
py_values, py_shape = test_pynative_2()
|
|
py_csr = test_pynative_3()
|
|
py_tuple = test_pynative_4()
|
|
|
|
g_indptr, g_indices = test_graph_1()
|
|
g_values, g_shape = test_graph_2()
|
|
g_csr = test_graph_3()
|
|
g_tuple = test_graph_4()
|
|
|
|
csr1 = CSRTensor(py_indptr, py_indices, py_values, py_shape)
|
|
csr2 = CSRTensor(g_indptr, g_indices, g_values, g_shape)
|
|
# check csr attr
|
|
compare_csr(csr1, csr2)
|
|
# check astype
|
|
compare_csr(py_csr, g_csr)
|
|
# check to_tuple
|
|
assert len(py_tuple) == len(g_tuple)
|
|
for i, _ in enumerate(py_tuple):
|
|
if isinstance(py_tuple[i], Tensor):
|
|
assert (py_tuple[i].asnumpy() == g_tuple[i].asnumpy()).all()
|
|
else:
|
|
assert py_tuple[i] == g_tuple[i]
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_csr_tensor_in_while():
|
|
"""
|
|
Feature: Test CSRTensor in while loop.
|
|
Description: Test CSRTensor computation in while loop.
|
|
Expectation: Success.
|
|
"""
|
|
class CSRTensorValuesDouble(nn.Cell):
|
|
|
|
def construct(self, x):
|
|
indptr = x.indptr
|
|
indices = x.indices
|
|
values = x.values * 2
|
|
shape = x.shape
|
|
return CSRTensor(indptr, indices, values, shape)
|
|
|
|
class CSRTensorValuesAdd2(nn.Cell):
|
|
|
|
def construct(self, x):
|
|
indptr = x.indptr
|
|
indices = x.indices
|
|
values = x.values + 2
|
|
shape = x.shape
|
|
return CSRTensor(indptr, indices, values, shape)
|
|
|
|
class CSRTensorWithControlWhile(nn.Cell):
|
|
def __init__(self, shape):
|
|
super(CSRTensorWithControlWhile, self).__init__()
|
|
self.op1 = CSRTensorValuesDouble()
|
|
self.op2 = CSRTensorValuesAdd2()
|
|
self.shape = shape
|
|
|
|
@ms_function
|
|
def construct(self, a, b, indptr, indices, values):
|
|
x = CSRTensor(indptr, indices, values, self.shape)
|
|
x = self.op2(x)
|
|
while a > b:
|
|
x = self.op1(x)
|
|
b = b + 1
|
|
return x
|
|
a = Tensor(3, mstype.int32)
|
|
b = Tensor(0, mstype.int32)
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([1, 2], dtype=mstype.float32)
|
|
shape = (2, 6)
|
|
net = CSRTensorWithControlWhile(shape)
|
|
out = net(a, b, indptr, indices, values)
|
|
assert np.allclose(out.indptr.asnumpy(), indptr.asnumpy(), .0, .0)
|
|
assert np.allclose(out.indices.asnumpy(), indices.asnumpy(), .0, .0)
|
|
assert np.allclose((values.asnumpy() + 2) * 8, out.values.asnumpy(), .0, .0)
|
|
assert shape == out.shape
|
|
|
|
# Test Export MindIR
|
|
file_name = "csrtensor_with_control_while_net"
|
|
export(net, a, b, indptr, indices, values, file_name=file_name, file_format="MINDIR")
|
|
mindir_name = file_name + ".mindir"
|
|
assert os.path.exists(mindir_name)
|
|
|
|
graph = load(mindir_name)
|
|
loaded_net = nn.GraphCell(graph)
|
|
outputs_after_load = loaded_net(a, b, indptr, indices, values)
|
|
assert np.allclose(out.indptr.asnumpy(), outputs_after_load.indptr.asnumpy())
|
|
assert np.allclose(out.indices.asnumpy(), outputs_after_load.indices.asnumpy())
|
|
assert np.allclose(out.values.asnumpy(), outputs_after_load.values.asnumpy())
|
|
assert out.shape == outputs_after_load.shape
|
|
|
|
|
|
@pytest.mark.level2
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_csr_tensor_in_while_cpu():
|
|
"""
|
|
Feature: Test CSRTensor in while loop.
|
|
Description: Test CSRTensor computation in while loop.
|
|
Expectation: Success.
|
|
"""
|
|
class CSRTensorValuesDouble(nn.Cell):
|
|
|
|
def construct(self, x):
|
|
indptr = x.indptr
|
|
indices = x.indices
|
|
values = x.values * 2
|
|
shape = x.shape
|
|
return CSRTensor(indptr, indices, values, shape)
|
|
|
|
class CSRTensorValuesAdd2(nn.Cell):
|
|
|
|
def construct(self, x):
|
|
indptr = x.indptr
|
|
indices = x.indices
|
|
values = x.values + 2
|
|
shape = x.shape
|
|
return CSRTensor(indptr, indices, values, shape)
|
|
|
|
class CSRTensorWithControlWhile(nn.Cell):
|
|
def __init__(self, shape):
|
|
super(CSRTensorWithControlWhile, self).__init__()
|
|
self.op1 = CSRTensorValuesDouble()
|
|
self.op2 = CSRTensorValuesAdd2()
|
|
self.shape = shape
|
|
|
|
@ms_function
|
|
def construct(self, a, b, indptr, indices, values):
|
|
x = CSRTensor(indptr, indices, values, self.shape)
|
|
x = self.op2(x)
|
|
while a > b:
|
|
x = self.op1(x)
|
|
b = b + 1
|
|
return x
|
|
a = Tensor(3, mstype.int32)
|
|
b = Tensor(0, mstype.int32)
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([1, 2], dtype=mstype.float32)
|
|
shape = (2, 6)
|
|
net = CSRTensorWithControlWhile(shape)
|
|
out = net(a, b, indptr, indices, values)
|
|
assert np.allclose(out.indptr.asnumpy(), indptr.asnumpy(), .0, .0)
|
|
assert np.allclose(out.indices.asnumpy(), indices.asnumpy(), .0, .0)
|
|
assert np.allclose((values.asnumpy() + 2) * 8, out.values.asnumpy(), .0, .0)
|
|
assert shape == out.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_batch_csr_ops():
|
|
"""
|
|
Feature: Test Batch CSR-related Ops.
|
|
Description: Test CSRReduceSum, CSRMul, CSRGather.
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
csr_gather = _csr_ops.CSRGather()
|
|
|
|
indptr = Tensor([0, 1, 1, 2, 2], dtype=mstype.int32)
|
|
indices = Tensor([0, 1], dtype=mstype.int32)
|
|
values = Tensor([[2, 1, 3], [2, 1, 3]], dtype=mstype.float32)
|
|
dense_shape = (4, 2, 3)
|
|
dense_tensor = Tensor(
|
|
[[[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]]],
|
|
dtype=mstype.float32)
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
|
|
def test_ops_pynative_gather():
|
|
dense = csr_gather(indptr, indices, dense_tensor, dense_shape)
|
|
return dense
|
|
|
|
def test_ops_pynative_reducesum():
|
|
dense = F.csr_reduce_sum(csr_tensor, 1)
|
|
return dense
|
|
|
|
def test_ops_pynative_sparse_elemwise():
|
|
sparse1 = csr_tensor * dense_tensor
|
|
sparse2 = csr_tensor / dense_tensor
|
|
return sparse1, sparse2
|
|
|
|
res_reducesum = test_ops_pynative_reducesum()
|
|
test_ops_graph_reducesum = ms_function(test_ops_pynative_reducesum)
|
|
graph_res_reducesum = test_ops_graph_reducesum()
|
|
expect1 = np.array([[2., 1., 3.]], dtype=np.float32)
|
|
expect2 = np.array([[2., 1., 3.]], dtype=np.float32)
|
|
assert np.allclose(res_reducesum[0].asnumpy(), expect1)
|
|
assert np.allclose(res_reducesum[2].asnumpy(), expect2)
|
|
assert np.allclose(graph_res_reducesum[0].asnumpy(), expect1)
|
|
assert np.allclose(graph_res_reducesum[2].asnumpy(), expect2)
|
|
|
|
res_elemwise = test_ops_pynative_sparse_elemwise()
|
|
test_ops_graph_elemwise = ms_function(test_ops_pynative_sparse_elemwise)
|
|
graph_res_elemwise = test_ops_graph_elemwise()
|
|
expect3 = np.array([[2., 1., 3.], [4., 2., 6.]], dtype=np.float32)
|
|
expect4 = np.array([[2., 1., 3.], [1., 0.5, 1.5]], dtype=np.float32)
|
|
assert np.allclose(res_elemwise[0].values.asnumpy(), expect3)
|
|
assert np.allclose(res_elemwise[1].values.asnumpy(), expect4)
|
|
assert np.allclose(graph_res_elemwise[0].values.asnumpy(), expect3)
|
|
assert np.allclose(graph_res_elemwise[1].values.asnumpy(), expect4)
|
|
|
|
expect5 = np.array([1., 1.], dtype=np.float32)
|
|
res_gather = test_ops_pynative_gather()
|
|
test_ops_graph_gather = ms_function(test_ops_pynative_gather)
|
|
graph_res_gather = test_ops_graph_gather()
|
|
assert np.allclose(res_gather.asnumpy(), expect5)
|
|
assert np.allclose(graph_res_gather.asnumpy(), expect5)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_csr_ops():
|
|
"""
|
|
Feature: Test CSR-related Ops.
|
|
Description: Test CSRReduceSum, CSRMul, CSRMV.
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
|
|
indptr = Tensor([0, 1, 2], dtype=mstype.int32)
|
|
indices = Tensor([0, 1], dtype=mstype.int32)
|
|
values = Tensor([2, 1], dtype=mstype.float32)
|
|
dense_shape = (2, 4)
|
|
|
|
dense_tensor = Tensor([[1., 1, 1, 1], [1, 1, 1, 1]], dtype=mstype.float32)
|
|
dense_vector = Tensor([[1.], [1], [1], [1]], dtype=mstype.float32)
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
|
|
def test_ops_pynative_dense():
|
|
dense1 = F.csr_reduce_sum(csr_tensor, 1)
|
|
dense2 = F.csr_mv(csr_tensor, dense_vector)
|
|
return dense1, dense2
|
|
|
|
def test_ops_pynative_sparse():
|
|
sparse1 = csr_tensor * dense_tensor
|
|
sparse2 = dense_tensor * csr_tensor
|
|
sparse3 = csr_tensor / dense_tensor
|
|
return sparse1, sparse2, sparse3
|
|
|
|
test_ops_graph_dense = ms_function(test_ops_pynative_dense)
|
|
test_ops_graph_sparse = ms_function(test_ops_pynative_sparse)
|
|
|
|
pynative_res_dense = test_ops_pynative_dense()
|
|
graph_res_dense = test_ops_graph_dense()
|
|
expect1 = np.array([[2.], [1.]], dtype=np.float32)
|
|
expect2 = np.array([[2.], [1.]], dtype=np.float32)
|
|
assert np.allclose(pynative_res_dense[0].asnumpy(), expect1)
|
|
assert np.allclose(pynative_res_dense[1].asnumpy(), expect2)
|
|
assert np.allclose(graph_res_dense[0].asnumpy(), expect1)
|
|
assert np.allclose(graph_res_dense[1].asnumpy(), expect2)
|
|
|
|
pynative_res_sparse = test_ops_pynative_sparse()
|
|
graph_res_sparse = test_ops_graph_sparse()
|
|
expect3 = np.array([2., 1.], dtype=np.float32)
|
|
assert np.allclose(pynative_res_sparse[0].values.asnumpy(), expect3)
|
|
assert np.allclose(pynative_res_sparse[1].values.asnumpy(), expect3)
|
|
assert np.allclose(pynative_res_sparse[2].values.asnumpy(), expect3)
|
|
assert np.allclose(graph_res_sparse[0].values.asnumpy(), expect3)
|
|
assert np.allclose(graph_res_sparse[1].values.asnumpy(), expect3)
|
|
assert np.allclose(graph_res_sparse[2].values.asnumpy(), expect3)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_csrtensor_export_and_import_mindir():
|
|
"""
|
|
Feature: Test exporting and loading CSRTensor MindIR.
|
|
Description: Test export and load.
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
class TestCSRTensor(nn.Cell):
|
|
def __init__(self, shape):
|
|
super(TestCSRTensor, self).__init__()
|
|
self.shape = shape
|
|
|
|
def construct(self, indptr, indices, values):
|
|
return CSRTensor(indptr, indices, values, self.shape)
|
|
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([2, 1], dtype=mstype.float32)
|
|
shape = (2, 4)
|
|
net = TestCSRTensor(shape)
|
|
|
|
file_name = "csrtensor_net"
|
|
export(net, indptr, indices, values, file_name=file_name, file_format="MINDIR")
|
|
mindir_name = file_name + ".mindir"
|
|
assert os.path.exists(mindir_name)
|
|
|
|
out = net(indptr, indices, values)
|
|
graph = load(mindir_name)
|
|
loaded_net = nn.GraphCell(graph)
|
|
outputs_after_load = loaded_net(indptr, indices, values)
|
|
assert np.allclose(out.indptr.asnumpy(), outputs_after_load.indptr.asnumpy())
|
|
assert np.allclose(out.indices.asnumpy(), outputs_after_load.indices.asnumpy())
|
|
assert np.allclose(out.values.asnumpy(), outputs_after_load.values.asnumpy())
|
|
assert out.shape == outputs_after_load.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_csrops_export_and_import_mindir():
|
|
"""
|
|
Feature: Test exporting and loading CSRTensor MindIR in a net.
|
|
Description: Test export and load.
|
|
Expectation: Success.
|
|
"""
|
|
class TestCSRNet(nn.Cell):
|
|
def __init__(self, shape):
|
|
super(TestCSRNet, self).__init__()
|
|
self.shape = shape
|
|
|
|
def construct(self, indptr, indices, values, dence_tensor, dense_vector):
|
|
csr_tensor = CSRTensor(indptr, indices, values, self.shape)
|
|
dense1 = F.csr_reduce_sum(csr_tensor, 1)
|
|
dense2 = F.csr_mv(csr_tensor, dense_vector)
|
|
dense3 = dense1 * dense2
|
|
sparse1 = csr_tensor * dence_tensor
|
|
sparse2 = dence_tensor * csr_tensor
|
|
return dense1, dense2, dense3, sparse1, sparse2
|
|
|
|
indptr = Tensor([0, 1, 2], dtype=mstype.int32)
|
|
indices = Tensor([0, 1], dtype=mstype.int32)
|
|
values = Tensor([2, 1], dtype=mstype.float32)
|
|
shape = (2, 4)
|
|
dense_tensor = Tensor([[1., 1, 1, 1], [1, 1, 1, 1]], dtype=mstype.float32)
|
|
dense_vector = Tensor([[1.], [1], [1], [1]], dtype=mstype.float32)
|
|
|
|
net = TestCSRNet(shape)
|
|
file_name = "csrops_net"
|
|
export(net, indptr, indices, values, dense_tensor, dense_vector, file_name=file_name, file_format="MINDIR")
|
|
mindir_name = file_name + ".mindir"
|
|
assert os.path.exists(mindir_name)
|
|
|
|
out = net(indptr, indices, values, dense_tensor, dense_vector)
|
|
expect0 = np.array([[2.], [1.]], dtype=np.float32)
|
|
expect1 = np.array([[2.], [1.]], dtype=np.float32)
|
|
expect2 = np.array([[4.], [1.]], dtype=np.float32)
|
|
expect3 = np.array([2., 1.], dtype=np.float32)
|
|
assert np.allclose(out[0].asnumpy(), expect0)
|
|
assert np.allclose(out[1].asnumpy(), expect1)
|
|
assert np.allclose(out[2].asnumpy(), expect2)
|
|
assert np.allclose(out[3].values.asnumpy(), expect3)
|
|
assert np.allclose(out[4].values.asnumpy(), expect3)
|
|
|
|
graph = load(mindir_name)
|
|
loaded_net = nn.GraphCell(graph)
|
|
outputs_after_load = loaded_net(indptr, indices, values, dense_tensor, dense_vector)
|
|
assert np.allclose(out[0].asnumpy(), outputs_after_load[0].asnumpy())
|
|
assert np.allclose(out[1].asnumpy(), outputs_after_load[1].asnumpy())
|
|
assert np.allclose(out[2].asnumpy(), outputs_after_load[2].asnumpy())
|
|
assert np.allclose(out[3].values.asnumpy(), outputs_after_load[3].values.asnumpy())
|
|
assert np.allclose(out[4].values.asnumpy(), outputs_after_load[4].values.asnumpy())
|
|
assert out[3].shape == outputs_after_load[3].shape
|
|
assert out[4].shape == outputs_after_load[4].shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_isinstance_csr_tensor():
|
|
"""
|
|
Feature: Test isinstance.
|
|
Description: Test: isinstance(x, CSRTensor).
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([2, 1], dtype=mstype.float32)
|
|
shape = (2, 4)
|
|
|
|
def pynative_test_csr_tensor():
|
|
x = CSRTensor(indptr, indices, values, shape)
|
|
# Test input CSRTensor
|
|
is_tensor = isinstance(x, Tensor)
|
|
is_bool = isinstance(x, bool)
|
|
is_float = isinstance(x, float)
|
|
is_tuple = isinstance(x, (Tensor, CSRTensor, int, float))
|
|
is_csr_tensor = isinstance(x, CSRTensor)
|
|
|
|
# Test input Tensor
|
|
is_tensor_2 = isinstance(indptr, CSRTensor)
|
|
is_tuple_2 = isinstance(indptr, (Tensor, CSRTensor))
|
|
return is_tensor, is_bool, is_float, is_tuple, is_csr_tensor, is_tensor_2, is_tuple_2
|
|
graph_test_csr_tensor = ms_function(pynative_test_csr_tensor)
|
|
|
|
out1 = pynative_test_csr_tensor()
|
|
out2 = graph_test_csr_tensor()
|
|
assert out1 == (False, False, False, True, True, False, True)
|
|
assert out2 == (False, False, False, True, True, False, True)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_dtype_csr_tensor():
|
|
"""
|
|
Feature: Test F.dtype with CSRTensor.
|
|
Description: Test: F.dtype(x).
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
indptr = Tensor([0, 1, 2])
|
|
indices = Tensor([0, 1])
|
|
values = Tensor([2, 1], dtype=mstype.float32)
|
|
shape = (2, 4)
|
|
|
|
def pynative_test():
|
|
x = CSRTensor(indptr, indices, values, shape)
|
|
return F.dtype(x), x.dtype
|
|
graph_test = ms_function(pynative_test)
|
|
|
|
out1, out2 = pynative_test()
|
|
out3, out4 = graph_test()
|
|
assert out1 in [mstype.float32]
|
|
assert out2 in [mstype.float32]
|
|
assert out3 in [mstype.float32]
|
|
assert out4 in [mstype.float32]
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_bprop():
|
|
"""
|
|
Feature: Test back-propagation with CSR-related Ops.
|
|
Description: Test CSRReduceSum, CSRMul, CSRDiv, CSRMV, CSRTensor.to_coo(), CSRTensor.to_dense().
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
grad_op = ops.GradOperation(get_all=True)
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_mul(indptr, indices, values, shape, dense):
|
|
csr_tensor = CSRTensor(indptr, indices, values, shape)
|
|
return csr_tensor * dense
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_div(indptr, indices, values, shape, dense):
|
|
csr_tensor = CSRTensor(indptr, indices, values, shape)
|
|
return csr_tensor / dense
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_reduce_sum(indptr, indices, values, shape, axis):
|
|
csr_tensor = CSRTensor(indptr, indices, values, shape)
|
|
return F.csr_reduce_sum(csr_tensor, axis)
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csrmv(indptr, indices, values, shape, dense):
|
|
csr_tensor = CSRTensor(indptr, indices, values, shape)
|
|
return F.csr_mv(csr_tensor, dense)
|
|
|
|
indptr = Tensor([0, 1, 4, 6], dtype=mstype.int32)
|
|
indices = Tensor([3, 0, 1, 2, 1, 3], dtype=mstype.int32)
|
|
values = Tensor(np.arange(6), dtype=mstype.float32)
|
|
dense_shape = (3, 4)
|
|
|
|
csr_mv_arg = Tensor([[1], [2], [3], [4]], dtype=mstype.float32)
|
|
csr_mv_expect_1 = np.array([4, 1, 2, 3, 2, 4], dtype=np.float32)
|
|
csr_mv_expect_2 = np.array([[1], [6], [3], [5]], dtype=np.float32)
|
|
csr_mv_output = test_csrmv(indptr, indices, values, dense_shape, csr_mv_arg)
|
|
# indptr, indices, values, dense_grad
|
|
assert len(csr_mv_output) == 4
|
|
assert np.allclose(csr_mv_output[2].asnumpy(), csr_mv_expect_1)
|
|
assert np.allclose(csr_mv_output[3].asnumpy(), csr_mv_expect_2)
|
|
|
|
csr_reduce_sum_expect_1 = np.ones(6, dtype=np.float32)
|
|
csr_reduce_sum_output_1 = test_csr_reduce_sum(indptr, indices, values, dense_shape, 1)
|
|
assert len(csr_reduce_sum_output_1) == 3
|
|
assert np.allclose(csr_reduce_sum_output_1[2].asnumpy(), csr_reduce_sum_expect_1)
|
|
|
|
csr_mul_arg_1 = Tensor([[1], [2], [3]], dtype=mstype.float32)
|
|
csr_mul_expect_1_1 = np.array([1, 2, 2, 2, 3, 3], dtype=np.float32)
|
|
csr_mul_expect_1_2 = np.array([[0], [6], [9]], dtype=np.float32)
|
|
csr_mul_output_1 = test_csr_mul(indptr, indices, values, dense_shape, csr_mul_arg_1)
|
|
assert len(csr_mul_output_1) == 4
|
|
assert np.allclose(csr_mul_output_1[2].asnumpy(), csr_mul_expect_1_1)
|
|
assert np.allclose(csr_mul_output_1[3].asnumpy(), csr_mul_expect_1_2)
|
|
|
|
csr_mul_arg_2 = Tensor(np.arange(12).reshape(3, 4), dtype=mstype.float32)
|
|
csr_mul_expect_2_1 = np.array([3, 4, 5, 6, 9, 11], dtype=np.float32)
|
|
csr_mul_expect_2_2 = np.array([[0, 0, 0, 0], [1, 2, 3, 0], [0, 4, 0, 5]], np.float32)
|
|
csr_mul_output_2 = test_csr_mul(indptr, indices, values, dense_shape, csr_mul_arg_2)
|
|
assert len(csr_mul_output_2) == 4
|
|
assert np.allclose(csr_mul_output_2[2].asnumpy(), csr_mul_expect_2_1)
|
|
assert np.allclose(csr_mul_output_2[3].asnumpy(), csr_mul_expect_2_2)
|
|
|
|
csr_div_expect_1_1 = np.array([1, 0.5, 0.5, 0.5, 0.3333333, 0.3333333], dtype=np.float32)
|
|
csr_div_expect_1_2 = np.array([[0], [-1.5], [-1]], dtype=np.float32)
|
|
csr_div_arg_1 = Tensor([[1], [2], [3]], dtype=mstype.float32)
|
|
csr_div_output_1 = test_csr_div(indptr, indices, values, dense_shape, csr_div_arg_1)
|
|
assert len(csr_div_output_1) == 4
|
|
assert np.allclose(csr_div_output_1[2].asnumpy(), csr_div_expect_1_1)
|
|
assert np.allclose(csr_div_output_1[3].asnumpy(), csr_div_expect_1_2)
|
|
|
|
csr_div_arg_2 = Tensor(np.arange(1, 13).reshape(3, 4), dtype=mstype.float32)
|
|
csr_div_expect_2_1 = np.array([0.25, 0.2, 0.16666667, 0.14285715, 0.1, 0.0833333], dtype=np.float32)
|
|
csr_div_expect_2_2 = np.array(
|
|
[[0, 0, 0, 0], [-0.04, -0.05555556, -0.06122449, 0], [0, -0.04, 0, -0.03472222]], dtype=np.float32)
|
|
csr_div_output_2 = test_csr_div(indptr, indices, values, dense_shape, csr_div_arg_2)
|
|
assert len(csr_div_output_2) == 4
|
|
assert np.allclose(csr_div_output_2[2].asnumpy(), csr_div_expect_2_1)
|
|
assert np.allclose(csr_div_output_2[3].asnumpy(), csr_div_expect_2_2)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_csr_method():
|
|
"""
|
|
Feature: Test csr tensor methods.
|
|
Description: Test csr_tensor.to_coo(), csr_tensor.to_dense().
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
class CSRToCOONet(nn.Cell):
|
|
def construct(self, csr_tensor):
|
|
return csr_tensor.to_coo()
|
|
|
|
class CSRToDenseNet(nn.Cell):
|
|
def construct(self, csr_tensor):
|
|
return csr_tensor.to_dense()
|
|
|
|
indptr = Tensor([0, 1, 4, 6], dtype=mstype.int32)
|
|
indices = Tensor([3, 0, 1, 2, 1, 3], dtype=mstype.int32)
|
|
values = Tensor(np.arange(6), dtype=mstype.float32)
|
|
dense_shape = (3, 4)
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
|
|
to_coo_output = CSRToCOONet()(csr_tensor)
|
|
to_coo_expect_1 = np.array([[0, 3], [1, 0], [1, 1], [1, 2], [2, 1], [2, 3]], dtype=np.int32)
|
|
to_coo_expect_2 = np.arange(6).astype(np.float32)
|
|
assert np.allclose(to_coo_output.indices.asnumpy(), to_coo_expect_1)
|
|
assert np.allclose(to_coo_output.values.asnumpy(), to_coo_expect_2)
|
|
|
|
to_dense_output = CSRToDenseNet()(csr_tensor)
|
|
to_dense_expect = np.array([[0, 0, 0, 0], [1, 2, 3, 0], [0, 4, 0, 5]], np.float32)
|
|
assert np.allclose(to_dense_output.asnumpy(), to_dense_expect)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_bprop2():
|
|
"""
|
|
Feature: Test back-propagation with CSR-related Ops.
|
|
Description: Test back-propagation of make_csr, csr.attributes, csr.methods().
|
|
Expectation: Success.
|
|
"""
|
|
if get_platform() != "linux":
|
|
return
|
|
grad_op = ops.GradOperation(get_all=True)
|
|
indptr = Tensor([0, 1, 4, 6], dtype=mstype.int32)
|
|
indices = Tensor([3, 0, 1, 2, 1, 3], dtype=mstype.int32)
|
|
values = Tensor(np.arange(6) - 3.5, dtype=mstype.float32)
|
|
dense_shape = (3, 4)
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_tensor(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_indptr(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.indptr
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_indices(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.indices
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_values(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.values
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_shape(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.shape
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_cast(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.astype(mstype.int32)
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_dtype(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.dtype
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_to_tuple(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.to_tuple()
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_to_abs(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.abs()
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_to_coo(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.to_coo()
|
|
|
|
@grad_op
|
|
@ms_function
|
|
def test_csr_to_dense(indptr, indices, values, dense_shape):
|
|
csr_tensor = CSRTensor(indptr, indices, values, dense_shape)
|
|
return csr_tensor.to_dense()
|
|
|
|
all_zero = (np.zeros(indptr.shape, np.int32), np.zeros(indices.shape, np.int32), np.zeros(values.shape, np.float32))
|
|
values_on = (np.zeros(indptr.shape, np.int32), np.zeros(indices.shape, np.int32), np.ones(values.shape, np.float32))
|
|
values_absgrad = (np.zeros(indptr.shape, np.int32), np.zeros(indices.shape, np.int32), np.sign(values.asnumpy()))
|
|
compare_res(test_csr_tensor(indptr, indices, values, dense_shape), values_on)
|
|
compare_res(test_csr_indptr(indptr, indices, values, dense_shape), all_zero)
|
|
compare_res(test_csr_indices(indptr, indices, values, dense_shape), all_zero)
|
|
compare_res(test_csr_values(indptr, indices, values, dense_shape), values_on)
|
|
compare_res(test_csr_cast(indptr, indices, values, dense_shape), values_on)
|
|
compare_res(test_csr_shape(indptr, indices, values, dense_shape), all_zero)
|
|
compare_res(test_csr_dtype(indptr, indices, values, dense_shape), all_zero)
|
|
compare_res(test_csr_to_tuple(indptr, indices, values, dense_shape), values_on)
|
|
compare_res(test_csr_to_abs(indptr, indices, values, dense_shape), values_absgrad)
|
|
compare_res(test_csr_to_coo(indptr, indices, values, dense_shape), values_on)
|
|
compare_res(test_csr_to_dense(indptr, indices, values, dense_shape), values_on)
|