mindspore/tests/st/graph_kernel/model/graph_kernel_split.py

142 lines
4.6 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""graph kernel split"""
import json
import getopt
import sys
import model
def print_usage():
print('Usage: graph_kernel_split.py [OPTION] <JSON_FILE>')
print('Options:')
print(' -s <config/auto>\tsplit graph with config')
print(' -e \t\testimate graph')
print(' -i \t\tnaive estimate')
print(' -o <prefix>\toutput split graphs')
print(' -v \t\tverbose mode')
print(' -h \t\tprint this help')
class Option:
"""Options"""
def __init__(self):
self.split = None
self.estimate = False
self.estimate_naive = False
self.output = None
self.verbose = False
self.help = False
def parse(self, options):
"""parse options"""
for name, val in options:
if name == '-h':
self.help = True
elif name == '-v':
self.verbose = True
elif name == '-o':
self.output = val
elif name == '-e':
self.estimate = True
elif name == '-s':
self.split = val
elif name == '-i':
self.estimate_naive = True
opt = Option()
def estimate(graph_in, parts_in, naive):
"""estimate graphs costs"""
def _print_cost(name, c):
print("%s\tdma_ratio=%f, saturation=%f, mix_saturation=%f, type=%s" %
(name, c.dma_ratio(), c.saturation(), c.mix_saturation(), c.cost_type()))
main_cost, _ = model.estimate(graph_in, naive)
split_cost, sub_costs = model.estimate(parts_in, naive) if parts_in else (None, None)
_print_cost("MainGraph:", main_cost)
if parts_in:
_print_cost("Subgraphs:", split_cost)
if opt.verbose:
for i, sub_cost in enumerate(sub_costs):
_print_cost(" |_%d:\t" % (i), sub_cost)
def split_graph(graph_in, config):
"""split graph"""
if config == 'auto':
return model.split(graph_in)
subgraphs = []
all_tensors = []
subgraph_idx = 0
config_parts = config.split('|')
for part in config_parts:
tensor_names = part.split(',')
graph_name = "%s_%d" % (graph_in.name, subgraph_idx)
g = graph_in.extract_subgraph(graph_name, tensor_names)
assert len(g.ops) == len(tensor_names)
subgraphs.append(g)
all_tensors += tensor_names
subgraph_idx += 1
if len(all_tensors) < len(graph_in.ops):
graph_name = "%s_%d" % (graph_in.name, subgraph_idx)
g = graph_in.extract_subgraph(graph_name, all_tensors, True)
subgraphs.append(g)
return subgraphs
def main():
opts, args = getopt.getopt(sys.argv[1:], 'heivo:s:')
opt.parse(opts)
if len(args) != 1 or opt.help:
print_usage()
sys.exit(0)
in_file = args[0]
with open(in_file, 'r') as f:
desc = json.loads(f.read())
comp = model.load_composite(desc)
graph = comp.graph
parts = []
# 1. split sub-graphs
if opt.split is not None:
parts = split_graph(graph, opt.split)
if opt.verbose:
print('----------- main graph --------------')
print(graph)
for i, _ in enumerate(parts):
print('---------------- sub graph %d ---------------' % (i))
print(parts[i])
# 2. estimate cost
if opt.estimate:
print('------------- cost --------------')
estimate(graph, parts, False)
if opt.estimate_naive:
print('------------- naive cost --------------')
estimate(graph, parts, True)
# 3. output parts
if opt.output is not None:
for graph_part in parts:
desc = comp.dump(graph_part)
s_desc = json.dumps(desc)
fname = "%s_%s.json" % (opt.output, graph_part.name)
with open(fname, 'w', encoding='utf-8') as of:
of.write(s_desc)
if __name__ == '__main__':
main()