mindspore/tests/st/dataset/test_gpu_reset.py

88 lines
2.5 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.train import Model
from mindspore.common import set_seed
import mindspore.dataset as ds
from mindspore.train.callback import Callback
from mindspore import log as logger
set_seed(1)
def create_np_dataset(size):
"""
Create dataset for train or test
"""
data = ds.NumpySlicesDataset(list(range(1, size + 1)), shuffle=False)
return data
def create_model():
"""
Define and return a simple model
"""
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.print = P.Print()
def construct(self, x):
self.print(x)
return x
net = Net()
model_ = Model(net)
return model_
class MyCallback(Callback):
def __init__(self, dataset_size, reset_point):
self.dataset_size = dataset_size
self.reset_point = reset_point
def epoch_end(self, run_context):
cb_params = run_context.original_args()
logger.info(f"Epoch #{cb_params.cur_epoch_num - 1} has ended")
if cb_params.cur_epoch_num == self.reset_point:
dataset = ds.engine.datasets._get_training_dataset() # pylint: disable=W0212
dataset._reset(self.reset_point * self.dataset_size) # pylint: disable=W0212
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dataset_reset_sink():
"""
Feature: Dataset recovery
Description: Test Dataset recovery when GPU (and sink mode) is used.
Expectation: Training completes successfully
"""
data = create_np_dataset(10)
model = create_model()
num_epochs = 3
reset_point = 2 # 2nd epoch
cb = MyCallback(dataset_size=data.get_dataset_size(), reset_point=reset_point)
model.train(num_epochs, data, callbacks=[cb])
if __name__ == '__main__':
test_dataset_reset_sink()