mindspore/tests/st/auto_monad/test_auto_monad_layer.py

82 lines
3.4 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from tqdm import tqdm
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore.dataset import NumpySlicesDataset
from mindspore import context, Tensor
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class AutoEncoderTrainNetwork(nn.Cell):
def __init__(self):
super(AutoEncoderTrainNetwork, self).__init__()
self.loss_fun = nn.MSELoss()
self.net = nn.CellList([nn.Dense(2, 32), nn.Dense(32, 2)])
self.relu = nn.ReLU()
def reconstruct_sample(self, x: Tensor):
for _, layer in enumerate(self.net):
x = layer(x)
x = self.relu(x)
return x
def construct(self, x: Tensor):
recon_x = self.reconstruct_sample(x)
return self.loss_fun(recon_x, x)
def sample_2d_data(self, n_normals=2000, n_outliers=400):
z = np.random.randn(n_normals, 2)
outliers = np.random.uniform(low=-6, high=6, size=(n_outliers, 2))
centers = np.array([(2., 0), (-2., 0)])
sigma = 0.3
normal_points = sigma * z + centers[np.random.randint(len(centers), size=(n_normals,))]
return np.vstack((normal_points, outliers))
def create_synthetic_dataset(self):
transformed_dataset = self.sample_2d_data()
for dim in range(transformed_dataset.shape[1]):
min_val = transformed_dataset[:, dim].min()
max_val = transformed_dataset[:, dim].max()
if min_val != max_val:
transformed_dataset[:, dim] = (transformed_dataset[:, dim] - min_val) / (max_val - min_val)
elif min_val != 1:
transformed_dataset[:, dim] = transformed_dataset[:, dim] / min_val
transformed_dataset = transformed_dataset.astype(np.float32)
return transformed_dataset
def test_auto_monad_layer():
ae_with_loss = AutoEncoderTrainNetwork()
transformed_dataset = ae_with_loss.create_synthetic_dataset()
dataloader = NumpySlicesDataset(data=(transformed_dataset,), shuffle=True)
dataloader = dataloader.batch(batch_size=16)
optim = nn.RMSProp(params=ae_with_loss.trainable_params(), learning_rate=0.002,)
train_net = nn.TrainOneStepCell(ae_with_loss, optim)
train_net.set_train()
gen_samples = dict()
num_epoch = 21
for epoch in tqdm(range(num_epoch)):
loss = []
for _, (batch,) in enumerate(dataloader):
batch = Tensor(batch, dtype=ms.float32)
loss_ = train_net(batch)
loss.append(loss_.asnumpy())
avg_loss = np.array(loss).mean()
if epoch % 10 == 0:
gen_samples[epoch] = ae_with_loss.reconstruct_sample(Tensor(transformed_dataset)).asnumpy()
print(f"epoch: {epoch}/{num_epoch}, avg loss: {avg_loss}")