forked from mindspore-Ecosystem/mindspore
38 lines
2.0 KiB
ReStructuredText
38 lines
2.0 KiB
ReStructuredText
mindspore.nn.FocalLoss
|
||
=======================
|
||
|
||
.. py:class:: mindspore.nn.FocalLoss(weight=None, gamma=2.0, reduction='mean')
|
||
|
||
FocalLoss函数。
|
||
|
||
解决了类别不平衡的问题。
|
||
|
||
FocalLoss函数在论文 `Focal Loss for Dense Object Detection <https://arxiv.org/pdf/1708.02002.pdf>`_ 中提出,提高了图像目标检测的效果。
|
||
|
||
函数如下:
|
||
|
||
.. math::
|
||
FL(p_t) = -(1-p_t)^\gamma log(p_t)
|
||
|
||
**参数:**
|
||
|
||
- **gamma** (float) - gamma用于调整Focal Loss的权重曲线的陡峭程度。默认值:2.0。
|
||
- **weight** (Union[Tensor, None]) - Focal Loss的权重,维度为1。如果为None,则不使用权重。默认值:None。
|
||
- **reduction** (str) - loss的计算方式。取值为"mean","sum",或"none"。默认值:"mean"。
|
||
|
||
**输入:**
|
||
|
||
- **logits** (Tensor) - shape为 :math:`(N, C)` 、 :math:`(N, C, H)` 、或 :math:`(N, C, H, W)` 的Tensor,其中 :math:`C` 是分类的数量,值大于1。如果shape为 :math:`(N, C, H, W)` 或 :math:`(N, C, H)` ,则 :math:`H` 或 :math:`H` 和 :math:`W` 的乘积应与 `labels` 的相同。
|
||
- **labels** (Tensor) - shape为 :math:`(N, C)` 、 :math:`(N, C, H)` 、或 :math:`(N, C, H, W)` 的Tensor, :math:`C` 的值为1,或者与 `logits` 的 :math:`C` 相同。如果 :math:`C` 不为1,则shape应与 `logits` 的shape相同,其中 :math:`C` 是分类的数量。如果shape为 :math:`(N, C, H, W)` 或 :math:`(N, C, H)` ,则 :math:`H` 或 :math:`H` 和 :math:`W` 的乘积应与 `logits` 相同。
|
||
|
||
**输出:**
|
||
|
||
Tensor或Scalar,如果 `reduction` 为"none",其shape与 `logits` 相同。否则,将返回Scalar。
|
||
|
||
**异常:**
|
||
|
||
- **TypeError** - `gamma` 的数据类型不是float。
|
||
- **TypeError** - `weight` 不是Tensor。
|
||
- **ValueError** - `labels` 维度与 `logits` 不同。
|
||
- **ValueError** - `labels` 通道不为1,且 `labels` 的shape与 `logits` 不同。
|
||
- **ValueError** - `reduction` 不为"mean","sum",或"none"。 |