forked from mindspore-Ecosystem/mindspore
38 lines
2.1 KiB
ReStructuredText
38 lines
2.1 KiB
ReStructuredText
mindspore.nn.Dense
|
||
===================
|
||
|
||
.. py:class:: mindspore.nn.Dense(in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None)
|
||
|
||
全连接层。
|
||
|
||
公式如下:
|
||
|
||
.. math::
|
||
\text{outputs} = \text{activation}(\text{X} * \text{kernel} + \text{bias}),
|
||
|
||
其中 :math:`X` 是输入Tensor, :math:`\text{activation}` 是激活函数, :math:`\text{kernel}` 是一个权重矩阵,其数据类型与 :math:`X` 相同, :math:`\text{bias}` 是一个偏置向量,其数据类型与 :math:`X` 相同(仅当has_bias为True时)。
|
||
|
||
**参数:**
|
||
|
||
- **in_channels** (int) - Dense层输入Tensor的空间维度。
|
||
- **out_channels** (int) - Dense层输出Tensor的空间维度。
|
||
- **weight_init** (Union[Tensor, str, Initializer, numbers.Number]) - 权重参数的初始化方法。数据类型与 `x` 相同。str的值引用自函数 `initializer`。默认值:'normal'。
|
||
- **bias_init** (Union[Tensor, str, Initializer, numbers.Number]) - 偏置参数的初始化方法。数据类型与 `x` 相同。str的值引用自函数 `initializer`。默认值:'zeros'。
|
||
- **has_bias** (bool) - 是否使用偏置向量 :math:`\text{bias}` 。默认值:True。
|
||
- **activation** (Union[str, Cell, Primitive]) - 应用于全连接层输出的激活函数,例如‘ReLU’。默认值:None。
|
||
|
||
**输入:**
|
||
|
||
- **x** (Tensor) - shape为 :math:`(*,in\_channels)` 的Tensor。 参数中的 `in_channels` 应等于输入中的 :math:`in\_channels` 。
|
||
|
||
**输出:**
|
||
|
||
shape为 :math:`(*,out\_channels)` 的Tensor。
|
||
|
||
**异常:**
|
||
|
||
- **TypeError** - `in_channels` 或 `out_channels` 不是整数。
|
||
- **TypeError** - `has_bias` 不是bool值。
|
||
- **TypeError** - `activation` 不是str、Cell、Primitive或者None。
|
||
- **ValueError** - `weight_init` 的shape长度不等于2,`weight_init` 的shape[0]不等于 `out_channels`,或者 `weight_init` 的shape[1]不等于 `in_channels`。
|
||
- **ValueError** - `bias_init` 的shape长度不等于1或 `bias_init` 的shape[0]不等于 `out_channels`。 |