forked from mindspore-Ecosystem/mindspore
121 lines
5.5 KiB
Python
121 lines
5.5 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore as ms
|
|
|
|
|
|
class FractionalMaxPool2dNet(nn.Cell):
|
|
"""FractionalMaxPool2d"""
|
|
|
|
def __init__(self):
|
|
super(FractionalMaxPool2dNet, self).__init__()
|
|
_random_samples = Tensor(np.array([[[0.0, 0.0]]]), mstype.float32)
|
|
self.pool1 = nn.FractionalMaxPool2d(kernel_size=2, output_size=(2, 2), _random_samples=_random_samples,
|
|
return_indices=True)
|
|
self.pool2 = nn.FractionalMaxPool2d(kernel_size=2, output_ratio=(0.5, 0.5), _random_samples=_random_samples,
|
|
return_indices=True)
|
|
|
|
def construct(self, x):
|
|
output1 = self.pool1(x)
|
|
output2 = self.pool2(x)
|
|
return output1, output2
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.platform_arm_cpu
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
def test_fractional_maxpool2d_normal(mode):
|
|
"""
|
|
Feature: FractionalMaxPool2d
|
|
Description: Verify the result of FractionalMaxPool2d
|
|
Expectation: success
|
|
"""
|
|
ms.set_context(mode=mode)
|
|
net = FractionalMaxPool2dNet()
|
|
input_x = Tensor(np.random.rand(25).reshape([1, 1, 5, 5]), mstype.float32)
|
|
output1, output2 = net(input_x)
|
|
assert output1[0].shape == output1[1].shape == (1, 1, 2, 2)
|
|
assert output2[0].shape == output2[1].shape == (1, 1, 2, 2)
|
|
input_x = Tensor([[[[5.58954370e-001, 6.63938331e-001, 6.21228504e-001, 2.42979444e-001, 3.76893662e-001],
|
|
[1.81983045e-003, 3.52343421e-001, 4.62048613e-001, 1.10343760e-001, 1.39571702e-001],
|
|
[4.99799584e-001, 4.64907907e-001, 6.20357162e-001, 3.59420753e-001, 1.26215309e-001],
|
|
[7.71829579e-002, 4.58553624e-001, 3.58015698e-001, 3.53923170e-001, 1.75972716e-001],
|
|
[5.65106732e-001, 6.46603699e-001, 6.05013040e-001, 3.82114821e-001, 4.62306777e-003]]]],
|
|
mstype.float32)
|
|
output1, output2 = net(input_x)
|
|
expect_output_y = np.array([[[[6.63938344e-001, 3.76893669e-001],
|
|
[6.46603703e-001, 3.82114828e-001]]]])
|
|
expect_output_argmax = np.array([[[[1, 4],
|
|
[21, 23]]]])
|
|
assert np.allclose(output1[0].asnumpy(), expect_output_y)
|
|
assert np.allclose(output1[1].asnumpy(), expect_output_argmax)
|
|
assert np.allclose(output2[0].asnumpy(), expect_output_y)
|
|
assert np.allclose(output2[1].asnumpy(), expect_output_argmax)
|
|
|
|
|
|
class FractionalMaxPool3dNet(nn.Cell):
|
|
"""FractionalMaxPool3d"""
|
|
|
|
def __init__(self):
|
|
super(FractionalMaxPool3dNet, self).__init__()
|
|
_random_samples = Tensor(np.array([0.0, 0.0, 0.0]).reshape([1, 1, 3]), mstype.float32)
|
|
self.pool1 = nn.FractionalMaxPool3d(kernel_size=(1.0, 1.0, 1.0), _random_samples=_random_samples,
|
|
output_size=(1, 1, 2), return_indices=True)
|
|
self.pool2 = nn.FractionalMaxPool3d(kernel_size=(1.0, 1.0, 1.0), output_ratio=(0.5, 0.5, 0.5),
|
|
_random_samples=_random_samples, return_indices=True)
|
|
|
|
def construct(self, x):
|
|
output1 = self.pool1(x)
|
|
output2 = self.pool2(x)
|
|
return output1, output2
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.platform_arm_cpu
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
def test_fractional_maxpool3d_normal(mode):
|
|
"""
|
|
Feature: Test FractioanlMaxPool3d
|
|
Description: Test the functionality of FractionalMaxPool3d
|
|
Expectation: Success
|
|
"""
|
|
ms.set_context(mode=mode)
|
|
input_x = Tensor(np.random.rand(16).reshape([1, 1, 2, 2, 4]), mstype.float32)
|
|
net = FractionalMaxPool3dNet()
|
|
output1, output2 = net(input_x)
|
|
assert output1[0].shape == output1[1].shape == (1, 1, 1, 1, 2)
|
|
assert output2[0].shape == output2[1].shape == (1, 1, 1, 1, 2)
|
|
input_x = Tensor([[[[[5.76273143e-001, 7.97047436e-001, 5.05385816e-001, 7.98332036e-001],
|
|
[5.79880655e-001, 9.75979388e-001, 3.17571498e-002, 8.08261558e-002]],
|
|
[[3.82758647e-001, 7.09801614e-001, 4.39641386e-001, 5.71077049e-001],
|
|
[9.16305065e-001, 3.71438652e-001, 6.52868748e-001, 6.91260636e-001]]]]], mstype.float32)
|
|
output1, output2 = net(input_x)
|
|
expect_output_y = np.array([[[[[9.16305065e-001, 6.91260636e-001]]]]])
|
|
expect_output_argmax = np.array([[[[[12, 15]]]]])
|
|
assert np.allclose(output1[0].asnumpy(), expect_output_y)
|
|
assert np.allclose(output1[1].asnumpy(), expect_output_argmax)
|
|
assert np.allclose(output2[0].asnumpy(), expect_output_y)
|
|
assert np.allclose(output2[1].asnumpy(), expect_output_argmax)
|