forked from mindspore-Ecosystem/mindspore
158 lines
5.9 KiB
Python
158 lines
5.9 KiB
Python
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import copy
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
import mindspore.nn as nn
|
|
from mindspore.ops.operations import _grad_ops as G
|
|
import mindspore.ops.operations as P
|
|
|
|
|
|
class LayerNormNet(nn.Cell):
|
|
def __init__(self, begin_norm_axis, begin_params_axis):
|
|
super(LayerNormNet, self).__init__()
|
|
self.layernorm = P.LayerNorm(begin_norm_axis, begin_params_axis)
|
|
|
|
def construct(self, x, gamma, beta):
|
|
return self.layernorm(x, gamma, beta)
|
|
|
|
|
|
class LayerNormGradNet(nn.Cell):
|
|
def __init__(self, begin_norm_axis, begin_params_axis):
|
|
super(LayerNormGradNet, self).__init__()
|
|
self.layernorm_grad = G.LayerNormGrad(begin_norm_axis, begin_params_axis)
|
|
|
|
def construct(self, dy, x, var, mean, gamma):
|
|
return self.layernorm_grad(dy, x, var, mean, gamma)
|
|
|
|
def get_layernorm_output(x, gamma, beta, begin_norm_axis, begin_params_axis, enable_graph_kernel=False):
|
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
|
|
|
net = LayerNormNet(begin_norm_axis, begin_params_axis)
|
|
output = net(x, gamma, beta)
|
|
|
|
return output
|
|
|
|
|
|
def get_layernorm_grad_output(x, dy, var, mean, gamma, begin_norm_axis, begin_params_axis, enable_graph_kernel=False):
|
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
|
|
|
net = LayerNormGradNet(begin_norm_axis, begin_params_axis)
|
|
output = net(x, dy, var, mean, gamma)
|
|
|
|
return output
|
|
|
|
def get_rtol_atol(dtype):
|
|
if dtype == np.float16:
|
|
return 1.e-3, 1.e-3
|
|
return 1.e-4, 1.e-4
|
|
|
|
|
|
def compare_result(expect, output, dtype):
|
|
rtol, atol = get_rtol_atol(dtype)
|
|
if isinstance(expect, (list, tuple)):
|
|
assert isinstance(output, (list, tuple)) and len(expect) == len(output)
|
|
expect_list = list(expect)
|
|
output_list = list(output)
|
|
for e, o in zip(expect_list, output_list):
|
|
assert np.allclose(e.asnumpy(), o.asnumpy(), rtol, atol, equal_nan=True)
|
|
else:
|
|
assert np.allclose(expect.asnumpy(), output.asnumpy(), rtol, atol, equal_nan=True)
|
|
|
|
|
|
def test_layernorm(shape, dtype, begin_norm_axis=-1, begin_params_axis=-1):
|
|
begin_norm_axis = begin_norm_axis if begin_norm_axis >= 0 else begin_norm_axis + len(shape)
|
|
begin_params_axis = begin_params_axis if begin_params_axis >= 0 else begin_params_axis + len(shape)
|
|
assert 0 <= begin_norm_axis < len(shape)
|
|
assert 0 <= begin_params_axis < len(shape)
|
|
normalized_shape = shape[begin_params_axis:]
|
|
|
|
np.random.seed(0)
|
|
# input tensors
|
|
x = Tensor(np.random.normal(0, 1, shape).astype(dtype))
|
|
gamma = Tensor(np.random.normal(0, 1, normalized_shape).astype(dtype))
|
|
beta = Tensor(np.random.normal(0, 1, normalized_shape).astype(dtype))
|
|
|
|
expect = get_layernorm_output(x, gamma, beta, begin_norm_axis, begin_params_axis, False)
|
|
output = get_layernorm_output(x, gamma, beta, begin_norm_axis, begin_params_axis, True)
|
|
|
|
compare_result(expect, output, dtype)
|
|
|
|
|
|
def test_layernorm_grad(shape, dtype, begin_norm_axis=-1, begin_params_axis=-1):
|
|
begin_norm_axis = begin_norm_axis if begin_norm_axis >= 0 else begin_norm_axis + len(shape)
|
|
begin_params_axis = begin_params_axis if begin_params_axis >= 0 else begin_params_axis + len(shape)
|
|
assert 0 <= begin_norm_axis < len(shape)
|
|
assert 0 <= begin_params_axis < len(shape)
|
|
|
|
norm_axis = [i for i in range(begin_norm_axis, len(shape))]
|
|
norm_shape = copy.deepcopy(shape)
|
|
for i, _ in enumerate(norm_shape):
|
|
if i in norm_axis:
|
|
norm_shape[i] = 1
|
|
params_shape = shape[begin_params_axis:]
|
|
|
|
np.random.seed(0)
|
|
# input tensors
|
|
dy = Tensor(np.random.normal(0, 1, shape).astype(dtype))
|
|
x = Tensor(np.random.normal(0, 1, shape).astype(dtype))
|
|
var = Tensor(np.random.normal(0, 1, norm_shape).astype(dtype))
|
|
mean = Tensor(np.random.normal(0, 1, norm_shape).astype(dtype))
|
|
gamma = Tensor(np.random.normal(0, 1, params_shape).astype(dtype))
|
|
|
|
expect = get_layernorm_grad_output(x, dy, var, mean, gamma, begin_norm_axis, begin_params_axis, False)
|
|
output = get_layernorm_grad_output(x, dy, var, mean, gamma, begin_norm_axis, begin_params_axis, True)
|
|
|
|
compare_result(expect, output, dtype)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_layernorm_gpu():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
test_layernorm([4, 32, 32], np.float32, -1, -1)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_layernorm_ascend():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
test_layernorm([4, 32, 32], np.float16, -1, -1)
|
|
test_layernorm([4, 32, 32], np.float32, -1, -1)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_layernorm_grad_gpu():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
test_layernorm_grad([4, 32, 32], np.float32, -1, -1)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_layernorm_grad_ascend():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
test_layernorm_grad([2, 16, 32], np.float16, -1, -1)
|
|
test_layernorm_grad([4, 32, 32], np.float32, -1, -1)
|