forked from mindspore-Ecosystem/mindspore
175 lines
5.5 KiB
Python
175 lines
5.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
from mindspore.common.parameter import ParameterTuple
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import composite as C
|
|
from mindspore.train.serialization import export, load
|
|
|
|
|
|
def weight_variable():
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
weight = weight_variable()
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
weight = weight_variable()
|
|
bias = weight_variable()
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
def __init__(self):
|
|
super(LeNet5, self).__init__()
|
|
self.batch_size = 32
|
|
self.conv1 = conv(1, 6, 5)
|
|
self.conv2 = conv(6, 16, 5)
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
self.fc3 = fc_with_initialize(84, 10)
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.reshape = P.Reshape()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.reshape(x, (self.batch_size, -1))
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class WithLossCell(nn.Cell):
|
|
def __init__(self, network):
|
|
super(WithLossCell, self).__init__(auto_prefix=False)
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
self.network = network
|
|
|
|
def construct(self, x, label):
|
|
predict = self.network(x)
|
|
return self.loss(predict, label)
|
|
|
|
|
|
class TrainOneStepCell(nn.Cell):
|
|
def __init__(self, network):
|
|
super(TrainOneStepCell, self).__init__(auto_prefix=False)
|
|
self.network = network
|
|
self.network.set_train()
|
|
self.weights = ParameterTuple(network.trainable_params())
|
|
self.optimizer = nn.Momentum(self.weights, 0.1, 0.9)
|
|
self.hyper_map = C.HyperMap()
|
|
self.grad = C.GradOperation(get_by_list=True)
|
|
|
|
def construct(self, x, label):
|
|
weights = self.weights
|
|
grads = self.grad(self.network, weights)(x, label)
|
|
return self.optimizer(grads)
|
|
|
|
|
|
class SingleIfNet(nn.Cell):
|
|
def construct(self, x, y):
|
|
x += 1
|
|
if x < y:
|
|
y += x
|
|
else:
|
|
y -= x
|
|
y += 5
|
|
return y
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_export_lenet_grad_mindir():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
network = LeNet5()
|
|
network.set_train()
|
|
predict = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.zeros([32, 10]).astype(np.float32))
|
|
net = TrainOneStepCell(WithLossCell(network))
|
|
export(net, predict, label, file_name="lenet_grad", file_format='MINDIR')
|
|
verify_name = "lenet_grad.mindir"
|
|
assert os.path.exists(verify_name)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_load_mindir_and_run():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
network = LeNet5()
|
|
network.set_train()
|
|
|
|
inputs0 = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
outputs0 = network(inputs0)
|
|
|
|
inputs = Tensor(np.zeros([32, 1, 32, 32]).astype(np.float32))
|
|
export(network, inputs, file_name="test_lenet_load", file_format='MINDIR')
|
|
mindir_name = "test_lenet_load.mindir"
|
|
assert os.path.exists(mindir_name)
|
|
|
|
graph = load(mindir_name)
|
|
loaded_net = nn.GraphCell(graph)
|
|
outputs_after_load = loaded_net(inputs0)
|
|
assert np.allclose(outputs0.asnumpy(), outputs_after_load.asnumpy())
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_single_if():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
network = SingleIfNet()
|
|
|
|
x = Tensor(np.array([1]).astype(np.float32))
|
|
y = Tensor(np.array([2]).astype(np.float32))
|
|
origin_out = network(x, y)
|
|
|
|
file_name = "if_net"
|
|
export(network, x, y, file_name=file_name, file_format='MINDIR')
|
|
mindir_name = file_name + ".mindir"
|
|
assert os.path.exists(mindir_name)
|
|
|
|
graph = load(mindir_name)
|
|
loaded_net = nn.GraphCell(graph)
|
|
outputs_after_load = loaded_net(x, y)
|
|
assert origin_out == outputs_after_load
|