mindspore/tests/st/control/test_high_order_control.py

151 lines
4.2 KiB
Python

# Copyright 2021-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test high order control flow """
import pytest
from mindspore.nn import Cell
from mindspore.common import Tensor, dtype
import mindspore.ops.functional as F
import mindspore.ops.operations as P
import numpy as np
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_high_control_while():
"""
Feature: High-order differential function.
Description: Infer of the high-order differential function.
Expectation: Null.
"""
class Net(Cell):
def construct(self, x):
while x < 10:
x = (x * 2)
return x
net = Net()
x = Tensor(1, dtype.float32)
grad_net = F.grad(net)
order_grad_net = F.grad(grad_net)
order_grad = order_grad_net(x)
assert order_grad == 0.0
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_high_control_for_while():
"""
Feature: High-order differential function.
Description: Infer of the complex high-order differential function.
Expectation: Null.
"""
class Net(Cell):
def construct(self, x):
for _ in [2]:
for _ in [2]:
while x > 1:
x = (x / 3)
x = (x / 2)
for _ in [2]:
x = (x / 1)
x = (x + 1)
for _ in [3]:
for _ in [4]:
x = (x / 1)
x = (x + 3)
for _ in [5]:
x = (x / 3)
x = (x / 2)
return x
net = Net()
x = Tensor(4, dtype.float32)
grad_net = F.grad(net)
grad_grad_net = F.grad(grad_net)
result = grad_grad_net(x)
assert result == 0.0
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_high_control_for_complex():
"""
Feature: High-order differential function.
Description: Infer of the complex high-order differential function.
Expectation: Null.
"""
class Net(Cell):
def __init__(self):
super().__init__()
self.op = P.Add()
def construct(self, x, y):
for _ in range(2):
if x == y:
pass
elif x == 5:
pass
elif x <= 2:
while x <= 4:
if x <= 2:
break
elif x <= 1:
pass
elif y >= x:
pass
elif x >= y:
pass
elif x > y:
pass
else:
pass
while x < y:
if x == 0:
pass
elif x < 4:
pass
elif x < 0:
pass
else:
pass
if x >= y:
pass
if y != x:
pass
elif x >= 0:
pass
else:
for _ in range(2):
if y >= x:
pass
if x == 3:
continue
return self.op(x, y)
x = np.array([4], np.float32)
y = np.array([4], np.float32)
net = Net()
grad_net = F.grad(net, grad_position=(0, 1))
sgrad_net = F.grad(grad_net)
sgrad = sgrad_net(Tensor(x), Tensor(y))
assert sgrad == 0.0