mindspore/tests/ut/python/dataset/test_split.py

610 lines
22 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import mindspore.dataset as ds
from util import config_get_set_num_parallel_workers
# test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631]
# the label of each image is [0,0,0,1,1] each image can be uniquely identified
# via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
manifest_map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
text_file_dataset_path = "../data/dataset/testTextFileDataset/*"
text_file_data = ["This is a text file.", "Another file.", "Be happy every day.",
"End of file.", "Good luck to everyone."]
def split_with_invalid_inputs(d):
with pytest.raises(ValueError) as info:
_, _ = d.split([])
assert "sizes cannot be empty" in str(info.value)
with pytest.raises(ValueError) as info:
_, _ = d.split([5, 0.6])
assert "sizes should be list of int or list of float" in str(info.value)
with pytest.raises(ValueError) as info:
_, _ = d.split([-1, 6])
assert "there should be no negative or zero numbers" in str(info.value)
with pytest.raises(RuntimeError) as info:
_, _ = d.split([3, 1])
assert "Sum of split sizes 4 is not equal to dataset size 5" in str(info.value)
with pytest.raises(RuntimeError) as info:
_, _ = d.split([5, 1])
assert "Sum of split sizes 6 is not equal to dataset size 5" in str(info.value)
with pytest.raises(RuntimeError) as info:
_, _ = d.split([0.15, 0.15, 0.15, 0.15, 0.15, 0.25])
assert "Sum of calculated split sizes 6 is not equal to dataset size 5" in str(info.value)
with pytest.raises(ValueError) as info:
_, _ = d.split([-0.5, 0.5])
assert "there should be no numbers outside the range (0, 1]" in str(info.value)
with pytest.raises(ValueError) as info:
_, _ = d.split([1.5, 0.5])
assert "there should be no numbers outside the range (0, 1]" in str(info.value)
with pytest.raises(ValueError) as info:
_, _ = d.split([0.5, 0.6])
assert "percentages do not sum up to 1" in str(info.value)
with pytest.raises(ValueError) as info:
_, _ = d.split([0.3, 0.6])
assert "percentages do not sum up to 1" in str(info.value)
with pytest.raises(RuntimeError) as info:
_, _ = d.split([0.05, 0.95])
assert "percentage 0.05 is too small" in str(info.value)
def test_unmappable_invalid_input():
d = ds.TextFileDataset(text_file_dataset_path)
split_with_invalid_inputs(d)
d = ds.TextFileDataset(text_file_dataset_path, num_shards=2, shard_id=0)
with pytest.raises(RuntimeError) as info:
_, _ = d.split([4, 1])
assert "Dataset should not be sharded before split" in str(info.value)
def test_unmappable_split():
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
s1, s2 = d.split([4, 1], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(item["text"].item().decode("utf8"))
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
assert s1_output == text_file_data[0:4]
assert s2_output == text_file_data[4:]
# exact percentages
s1, s2 = d.split([0.8, 0.2], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(item["text"].item().decode("utf8"))
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
assert s1_output == text_file_data[0:4]
assert s2_output == text_file_data[4:]
# fuzzy percentages
s1, s2 = d.split([0.33, 0.67], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(item["text"].item().decode("utf8"))
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
assert s1_output == text_file_data[0:2]
assert s2_output == text_file_data[2:]
# Restore configuration num_parallel_workers
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_unmappable_randomize_deterministic():
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
ds.config.set_seed(53)
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
s1, s2 = d.split([0.8, 0.2])
for _ in range(10):
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(item["text"].item().decode("utf8"))
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
# note no overlap
assert s1_output == [text_file_data[0], text_file_data[2], text_file_data[1], text_file_data[4]]
assert s2_output == [text_file_data[3]]
# Restore configuration num_parallel_workers
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_unmappable_randomize_repeatable():
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
ds.config.set_seed(53)
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
s1, s2 = d.split([0.8, 0.2])
num_epochs = 5
s1 = s1.repeat(num_epochs)
s2 = s2.repeat(num_epochs)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(item["text"].item().decode("utf8"))
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
# note no overlap
assert s1_output == [text_file_data[0], text_file_data[2], text_file_data[1], text_file_data[4]] * num_epochs
assert s2_output == [text_file_data[3]] * num_epochs
# Restore configuration num_parallel_workers
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_unmappable_get_dataset_size():
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
s1, s2 = d.split([0.8, 0.2])
assert d.get_dataset_size() == 5
assert s1.get_dataset_size() == 4
assert s2.get_dataset_size() == 1
def test_unmappable_multi_split():
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
ds.config.set_seed(53)
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
s1, s2 = d.split([4, 1])
s1_correct_output = [text_file_data[0], text_file_data[2], text_file_data[1], text_file_data[4]]
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(item["text"].item().decode("utf8"))
assert s1_output == s1_correct_output
# no randomize in second split
s1s1, s1s2, s1s3 = s1.split([1, 2, 1], randomize=False)
s1s1_output = []
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s1_output.append(item["text"].item().decode("utf8"))
s1s2_output = []
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s2_output.append(item["text"].item().decode("utf8"))
s1s3_output = []
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s3_output.append(item["text"].item().decode("utf8"))
assert s1s1_output == [s1_correct_output[0]]
assert s1s2_output == [s1_correct_output[1], s1_correct_output[2]]
assert s1s3_output == [s1_correct_output[3]]
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
assert s2_output == [text_file_data[3]]
# randomize in second split
# the labels outputted by the ShuffleOp for seed 53 is [2, 3, 1, 0]
shuffled_ids = [2, 3, 1, 0]
s1s1, s1s2, s1s3 = s1.split([1, 2, 1])
s1s1_output = []
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s1_output.append(item["text"].item().decode("utf8"))
s1s2_output = []
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s2_output.append(item["text"].item().decode("utf8"))
s1s3_output = []
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s3_output.append(item["text"].item().decode("utf8"))
assert s1s1_output == [s1_correct_output[shuffled_ids[0]]]
assert s1s2_output == [s1_correct_output[shuffled_ids[1]], s1_correct_output[shuffled_ids[2]]]
assert s1s3_output == [s1_correct_output[shuffled_ids[3]]]
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(item["text"].item().decode("utf8"))
assert s2_output == [text_file_data[3]]
# Restore configuration num_parallel_workers
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_mappable_invalid_input():
d = ds.ManifestDataset(manifest_file)
split_with_invalid_inputs(d)
d = ds.ManifestDataset(manifest_file, num_shards=2, shard_id=0)
with pytest.raises(RuntimeError) as info:
_, _ = d.split([4, 1])
assert "Dataset should not be sharded before split" in str(info.value)
def test_mappable_split_general():
d = ds.ManifestDataset(manifest_file, shuffle=False)
d = d.take(5)
# absolute rows
s1, s2 = d.split([4, 1], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1, 2, 3]
assert s2_output == [4]
# exact percentages
s1, s2 = d.split([0.8, 0.2], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1, 2, 3]
assert s2_output == [4]
# fuzzy percentages
s1, s2 = d.split([0.33, 0.67], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1]
assert s2_output == [2, 3, 4]
def test_mappable_split_optimized():
d = ds.ManifestDataset(manifest_file, shuffle=False)
# absolute rows
s1, s2 = d.split([4, 1], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1, 2, 3]
assert s2_output == [4]
# exact percentages
s1, s2 = d.split([0.8, 0.2], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1, 2, 3]
assert s2_output == [4]
# fuzzy percentages
s1, s2 = d.split([0.33, 0.67], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1]
assert s2_output == [2, 3, 4]
def test_mappable_randomize_deterministic():
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
ds.config.set_seed(53)
d = ds.ManifestDataset(manifest_file, shuffle=False)
s1, s2 = d.split([0.8, 0.2])
for _ in range(10):
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
# note no overlap
assert s1_output == [0, 1, 3, 4]
assert s2_output == [2]
def test_mappable_randomize_repeatable():
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
ds.config.set_seed(53)
d = ds.ManifestDataset(manifest_file, shuffle=False)
s1, s2 = d.split([0.8, 0.2])
num_epochs = 5
s1 = s1.repeat(num_epochs)
s2 = s2.repeat(num_epochs)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
# note no overlap
assert s1_output == [0, 1, 3, 4] * num_epochs
assert s2_output == [2] * num_epochs
def test_mappable_sharding():
# set arbitrary seed for repeatability for shard after split
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
ds.config.set_seed(53)
num_epochs = 5
first_split_num_rows = 4
d = ds.ManifestDataset(manifest_file, shuffle=False)
s1, s2 = d.split([first_split_num_rows, 1])
distributed_sampler = ds.DistributedSampler(2, 0)
s1.use_sampler(distributed_sampler)
s1 = s1.repeat(num_epochs)
# testing sharding, second dataset to simulate another instance
d2 = ds.ManifestDataset(manifest_file, shuffle=False)
d2s1, d2s2 = d2.split([first_split_num_rows, 1])
distributed_sampler = ds.DistributedSampler(2, 1)
d2s1.use_sampler(distributed_sampler)
d2s1 = d2s1.repeat(num_epochs)
# shard 0
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
# shard 1
d2s1_output = []
for item in d2s1.create_dict_iterator(num_epochs=1, output_numpy=True):
d2s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
rows_per_shard_per_epoch = 2
assert len(s1_output) == rows_per_shard_per_epoch * num_epochs
assert len(d2s1_output) == rows_per_shard_per_epoch * num_epochs
# verify each epoch that
# 1. shards contain no common elements
# 2. the data was split the same way, and that the union of shards equal the split
correct_sorted_split_result = [0, 1, 3, 4]
for i in range(num_epochs):
combined_data = []
for j in range(rows_per_shard_per_epoch):
combined_data.append(s1_output[i * rows_per_shard_per_epoch + j])
combined_data.append(d2s1_output[i * rows_per_shard_per_epoch + j])
assert sorted(combined_data) == correct_sorted_split_result
# test other split
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
d2s2_output = []
for item in d2s2.create_dict_iterator(num_epochs=1, output_numpy=True):
d2s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s2_output == [2]
assert d2s2_output == [2]
def test_mappable_get_dataset_size():
d = ds.ManifestDataset(manifest_file, shuffle=False)
s1, s2 = d.split([4, 1])
assert d.get_dataset_size() == 5
assert s1.get_dataset_size() == 4
assert s2.get_dataset_size() == 1
def test_mappable_multi_split():
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
ds.config.set_seed(53)
d = ds.ManifestDataset(manifest_file, shuffle=False)
s1, s2 = d.split([4, 1])
s1_correct_output = [0, 1, 3, 4]
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == s1_correct_output
# no randomize in second split
s1s1, s1s2, s1s3 = s1.split([1, 2, 1], randomize=False)
s1s1_output = []
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s1s2_output = []
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s1s3_output = []
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1s1_output == [s1_correct_output[0]]
assert s1s2_output == [s1_correct_output[1], s1_correct_output[2]]
assert s1s3_output == [s1_correct_output[3]]
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s2_output == [2]
# randomize in second split
# the labels outputted by the RandomSampler for seed 53 is [3, 1, 2, 0]
random_sampler_ids = [3, 1, 2, 0]
s1s1, s1s2, s1s3 = s1.split([1, 2, 1])
s1s1_output = []
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s1s2_output = []
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s1s3_output = []
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
s1s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1s1_output == [s1_correct_output[random_sampler_ids[0]]]
assert s1s2_output == [s1_correct_output[random_sampler_ids[1]], s1_correct_output[random_sampler_ids[2]]]
assert s1s3_output == [s1_correct_output[random_sampler_ids[3]]]
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s2_output == [2]
def test_rounding():
d = ds.ManifestDataset(manifest_file, shuffle=False)
# under rounding
s1, s2 = d.split([0.5, 0.5], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0, 1, 2]
assert s2_output == [3, 4]
# over rounding
s1, s2, s3 = d.split([0.15, 0.55, 0.3], randomize=False)
s1_output = []
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s2_output = []
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
s3_output = []
for item in s3.create_dict_iterator(num_epochs=1, output_numpy=True):
s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
assert s1_output == [0]
assert s2_output == [1, 2]
assert s3_output == [3, 4]
if __name__ == '__main__':
test_unmappable_invalid_input()
test_unmappable_split()
test_unmappable_randomize_deterministic()
test_unmappable_randomize_repeatable()
test_unmappable_get_dataset_size()
test_unmappable_multi_split()
test_mappable_invalid_input()
test_mappable_split_general()
test_mappable_split_optimized()
test_mappable_randomize_deterministic()
test_mappable_randomize_repeatable()
test_mappable_sharding()
test_mappable_get_dataset_size()
test_mappable_multi_split()
test_rounding()