forked from mindspore-Ecosystem/mindspore
109 lines
4.0 KiB
Python
109 lines
4.0 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import datetime
|
|
import numpy as np
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.communication.management import init, get_group_size
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
init('nccl')
|
|
|
|
epoch = 5
|
|
total = 5000
|
|
batch_size = 32
|
|
mini_batch = total // batch_size
|
|
|
|
|
|
class LeNet(nn.Cell):
|
|
def __init__(self):
|
|
super(LeNet, self).__init__()
|
|
|
|
self.relu = P.ReLU()
|
|
self.batch_size = 32
|
|
weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
|
|
weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
|
|
self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
|
|
self.reshape = P.Reshape()
|
|
|
|
weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01)
|
|
self.fc1 = nn.Dense(400, 120, weight_init=weight1)
|
|
|
|
weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01)
|
|
self.fc2 = nn.Dense(120, 84, weight_init=weight2)
|
|
|
|
weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01)
|
|
self.fc3 = nn.Dense(84, 10, weight_init=weight3)
|
|
|
|
def construct(self, input_x):
|
|
output = self.conv1(input_x)
|
|
output = self.relu(output)
|
|
output = self.pool(output)
|
|
output = self.conv2(output)
|
|
output = self.relu(output)
|
|
output = self.pool(output)
|
|
output = self.reshape(output, (self.batch_size, -1))
|
|
output = self.fc1(output)
|
|
output = self.fc2(output)
|
|
output = self.fc3(output)
|
|
return output
|
|
|
|
|
|
def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
|
|
lr = []
|
|
for step in range(total_steps):
|
|
lr_ = base_lr * gamma ** (step // gap)
|
|
lr.append(lr_)
|
|
return Tensor(np.array(lr), dtype)
|
|
|
|
|
|
def test_lenet_nccl():
|
|
net = LeNet()
|
|
net.set_train()
|
|
|
|
learning_rate = multisteplr(epoch, 2)
|
|
momentum = 0.9
|
|
mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
net_with_criterion = WithLossCell(net, criterion)
|
|
context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size())
|
|
train_network = TrainOneStepCell(net_with_criterion, mom_optimizer)
|
|
train_network.set_train()
|
|
losses = []
|
|
|
|
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
|
|
start = datetime.datetime.now()
|
|
for _ in range(epoch):
|
|
for _ in range(mini_batch):
|
|
loss = train_network(data, label)
|
|
losses.append(loss.asnumpy())
|
|
end = datetime.datetime.now()
|
|
with open("ms_time.txt", "w") as fo1:
|
|
fo1.write("time:")
|
|
fo1.write(str(end - start))
|
|
with open("ms_loss.txt", "w") as fo2:
|
|
fo2.write("loss:")
|
|
fo2.write(str(losses[-5:]))
|
|
assert losses[-1] < 0.01
|