mindspore/tests/ut/python/dataset/test_wordpiece_tokenizer.py

114 lines
3.7 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing WordpieceTokenizer op in DE
"""
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.text as nlp
WORDPIECE_TOKENIZER_FILE = "../data/dataset/testTokenizerData/wordpiece_tokenizer.txt"
vocab_english = [
"book", "cholera", "era", "favor", "##ite", "my", "is", "love", "dur", "##ing", "the"
]
vocab_chinese = [
"", '', '', '', '', '', '', '', '', '', '', '', ''
]
vocab_mix = vocab_chinese + vocab_english
test_paras = [
dict(
first=1,
last=10,
expect_str=[['my'], ['favor', '##ite'], ['book'], ['is'], ['love'], ['dur', '##ing'], ['the'], ['cholera'],
['era'], ['[UNK]']],
vocab_list=vocab_english
),
dict(
first=1,
last=10,
expect_str=[['my'], ['favor', '##ite'], ['book'], ['is'], ['love'], ['dur', '##ing'], ['the'], ['cholera'],
['era'], ['what']],
vocab_list=vocab_english,
unknown_token=""
),
dict(
first=1,
last=10,
expect_str=[['my'], ['[UNK]'], ['book'], ['is'], ['love'], ['[UNK]'], ['the'], ['[UNK]'], ['era'], ['[UNK]']],
vocab_list=vocab_english,
max_bytes_per_token=4
),
dict(
first=11,
last=25,
expect_str=[[''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''],
['[UNK]']],
vocab_list=vocab_chinese,
),
dict(
first=25,
last=25,
expect_str=[['']],
vocab_list=vocab_chinese,
unknown_token=""
),
dict(
first=1,
last=25,
expect_str=[
['my'], ['favor', '##ite'], ['book'], ['is'], ['love'], ['dur', '##ing'], ['the'], ['cholera'], ['era'],
['[UNK]'],
[''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''], [''],
['[UNK]']],
vocab_list=vocab_mix,
),
]
def check_wordpiece_tokenizer(first, last, expect_str, vocab_list, unknown_token='[UNK]', max_bytes_per_token=100):
dataset = ds.TextFileDataset(WORDPIECE_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
vocab = nlp.Vocab.from_list(vocab_list)
tokenizer_op = nlp.WordpieceTokenizer(vocab=vocab, unknown_token=unknown_token,
max_bytes_per_token=max_bytes_per_token)
dataset = dataset.map(operations=tokenizer_op)
count = 0
for i in dataset.create_dict_iterator():
text = nlp.to_str(i['text'])
logger.info("Out:", text)
logger.info("Exp:", expect_str[count])
np.testing.assert_array_equal(text, expect_str[count])
count = count + 1
def test_wordpiece_tokenizer():
"""
Test WordpieceTokenizer
"""
for paras in test_paras:
check_wordpiece_tokenizer(**paras)
if __name__ == '__main__':
test_wordpiece_tokenizer()