forked from mindspore-Ecosystem/mindspore
130 lines
4.6 KiB
Python
130 lines
4.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing RandomRotation op in DE
|
|
"""
|
|
import numpy as np
|
|
import cv2
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
|
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
|
from mindspore import log as logger
|
|
from util import visualize_image, diff_mse
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def test_random_rotation_op(plot=False):
|
|
"""
|
|
Test RandomRotation op
|
|
"""
|
|
logger.info("test_random_rotation_op")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
|
|
random_rotation_op = c_vision.RandomRotation((90, 90), expand=True)
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(input_columns=["image"], operations=decode_op)
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
|
if num_iter > 0:
|
|
break
|
|
rotation_de = item1["image"]
|
|
original = item2["image"]
|
|
logger.info("shape before rotate: {}".format(original.shape))
|
|
rotation_cv = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
mse = diff_mse(rotation_de, rotation_cv)
|
|
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
|
assert mse == 0
|
|
num_iter += 1
|
|
if plot:
|
|
visualize_image(original, rotation_de, mse, rotation_cv)
|
|
|
|
|
|
def test_random_rotation_expand():
|
|
"""
|
|
Test RandomRotation op
|
|
"""
|
|
logger.info("test_random_rotation_op")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
|
|
random_rotation_op = c_vision.RandomRotation((0, 90), expand=True)
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator():
|
|
rotation = item["image"]
|
|
logger.info("shape after rotate: {}".format(rotation.shape))
|
|
num_iter += 1
|
|
|
|
|
|
def test_rotation_diff():
|
|
"""
|
|
Test Rotation op
|
|
"""
|
|
logger.info("test_random_rotation_op")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
|
|
rotation_op = c_vision.RandomRotation((45, 45), expand=True)
|
|
ctrans = [decode_op,
|
|
rotation_op
|
|
]
|
|
|
|
data1 = data1.map(input_columns=["image"], operations=ctrans)
|
|
|
|
# Second dataset
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomRotation((45, 45), expand=True),
|
|
py_vision.ToTensor(),
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(input_columns=["image"], operations=transform())
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
|
num_iter += 1
|
|
c_image = item1["image"]
|
|
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
|
|
logger.info("shape of c_image: {}".format(c_image.shape))
|
|
logger.info("shape of py_image: {}".format(py_image.shape))
|
|
|
|
logger.info("dtype of c_image: {}".format(c_image.dtype))
|
|
logger.info("dtype of py_image: {}".format(py_image.dtype))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_random_rotation_op(True)
|
|
test_random_rotation_expand()
|
|
test_rotation_diff()
|