forked from mindspore-Ecosystem/mindspore
239 lines
8.4 KiB
Python
239 lines
8.4 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import numpy as np
|
|
import mindspore.dataset as ds
|
|
from mindspore.dataset.text import JiebaTokenizer
|
|
from mindspore.dataset.text import JiebaMode, to_str
|
|
|
|
DATA_FILE = "../data/dataset/testJiebaDataset/3.txt"
|
|
DATA_ALL_FILE = "../data/dataset/testJiebaDataset/*"
|
|
|
|
HMM_FILE = "../data/dataset/jiebadict/hmm_model.utf8"
|
|
MP_FILE = "../data/dataset/jiebadict/jieba.dict.utf8"
|
|
|
|
|
|
def test_jieba_1():
|
|
"""Test jieba tokenizer with MP mode"""
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧']
|
|
ret = []
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_1_1():
|
|
"""Test jieba tokenizer with HMM mode"""
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.HMM)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['今天', '天气', '太', '好', '了', '我们', '一起', '去', '外面', '玩', '吧']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_1_2():
|
|
"""Test jieba tokenizer with HMM MIX"""
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MIX)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_2():
|
|
"""Test add_word"""
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt"
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_word("男默女泪")
|
|
expect = ['男默女泪', '市', '长江大桥']
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=2)
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_2_1():
|
|
"""Test add_word with freq"""
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt"
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_word("男默女泪", 10)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=2)
|
|
expect = ['男默女泪', '市', '长江大桥']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_2_2():
|
|
"""Test add_word with invalid None Input"""
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
try:
|
|
jieba_op.add_word(None)
|
|
except ValueError:
|
|
pass
|
|
|
|
|
|
def test_jieba_2_3():
|
|
"""Test add_word with freq, the value of freq affects the result of segmentation"""
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/6.txt"
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_word("江大桥", 20000)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=2)
|
|
expect = ['江州', '市长', '江大桥', '参加', '了', '长江大桥', '的', '通车', '仪式']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_3():
|
|
"""Test add_dict with dict"""
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt"
|
|
user_dict = {
|
|
"男默女泪": 10
|
|
}
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_dict(user_dict)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['男默女泪', '市', '长江大桥']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_3_1():
|
|
"""Test add_dict with dict"""
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/4.txt"
|
|
user_dict = {
|
|
"男默女泪": 10,
|
|
"江大桥": 20000
|
|
}
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_dict(user_dict)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['男默女泪', '市长', '江大桥']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_4():
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/3.txt"
|
|
DICT_FILE = "../data/dataset/testJiebaDataset/user_dict.txt"
|
|
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_dict(DICT_FILE)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def test_jieba_4_1():
|
|
"""Test add dict with invalid file path"""
|
|
DICT_FILE = ""
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
try:
|
|
jieba_op.add_dict(DICT_FILE)
|
|
except ValueError:
|
|
pass
|
|
|
|
|
|
def test_jieba_5():
|
|
"""Test add dict with file path"""
|
|
DATA_FILE4 = "../data/dataset/testJiebaDataset/6.txt"
|
|
|
|
data = ds.TextFileDataset(DATA_FILE4)
|
|
jieba_op = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
|
jieba_op.add_word("江大桥", 20000)
|
|
data = data.map(input_columns=["text"],
|
|
operations=jieba_op, num_parallel_workers=1)
|
|
expect = ['江州', '市长', '江大桥', '参加', '了', '长江大桥', '的', '通车', '仪式']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
def gen():
|
|
text = np.array("今天天气太好了我们一起去外面玩吧".encode("UTF8"), dtype='S')
|
|
yield (text,)
|
|
|
|
|
|
def pytoken_op(input_data):
|
|
te = str(to_str(input_data))
|
|
tokens = []
|
|
tokens.append(te[:5].encode("UTF8"))
|
|
tokens.append(te[5:10].encode("UTF8"))
|
|
tokens.append(te[10:].encode("UTF8"))
|
|
return np.array(tokens, dtype='S')
|
|
|
|
|
|
def test_jieba_6():
|
|
data = ds.GeneratorDataset(gen, column_names=["text"])
|
|
data = data.map(input_columns=["text"],
|
|
operations=pytoken_op, num_parallel_workers=1)
|
|
expect = ['今天天气太', '好了我们一', '起去外面玩吧']
|
|
for i in data.create_dict_iterator():
|
|
ret = to_str(i["text"])
|
|
for index, item in enumerate(ret):
|
|
assert item == expect[index]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_jieba_1()
|
|
test_jieba_1_1()
|
|
test_jieba_1_2()
|
|
test_jieba_2()
|
|
test_jieba_2_1()
|
|
test_jieba_2_2()
|
|
test_jieba_3()
|
|
test_jieba_3_1()
|
|
test_jieba_4()
|
|
test_jieba_4_1()
|
|
test_jieba_5()
|
|
test_jieba_5()
|
|
test_jieba_6()
|