mindspore/tests/ut/python/dataset/test_fill_op.py

96 lines
3.0 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing fill op
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as data_trans
def test_fillop_basic():
def gen():
yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
data = ds.GeneratorDataset(gen, column_names=["col"])
fill_op = data_trans.Fill(3)
data = data.map(input_columns=["col"], operations=fill_op)
expected = np.array([3, 3, 3, 3], dtype=np.uint8)
for data_row in data:
np.testing.assert_array_equal(data_row[0], expected)
def test_fillop_down_type_cast():
def gen():
yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
data = ds.GeneratorDataset(gen, column_names=["col"])
fill_op = data_trans.Fill(-3)
data = data.map(input_columns=["col"], operations=fill_op)
expected = np.array([253, 253, 253, 253], dtype=np.uint8)
for data_row in data:
np.testing.assert_array_equal(data_row[0], expected)
def test_fillop_up_type_cast():
def gen():
yield (np.array([4, 5, 6, 7], dtype=np.float),)
data = ds.GeneratorDataset(gen, column_names=["col"])
fill_op = data_trans.Fill(3)
data = data.map(input_columns=["col"], operations=fill_op)
expected = np.array([3., 3., 3., 3.], dtype=np.float)
for data_row in data:
np.testing.assert_array_equal(data_row[0], expected)
def test_fillop_string():
def gen():
yield (np.array(["45555", "45555"], dtype='S'),)
data = ds.GeneratorDataset(gen, column_names=["col"])
fill_op = data_trans.Fill("error")
data = data.map(input_columns=["col"], operations=fill_op)
expected = np.array(['error', 'error'], dtype='S')
for data_row in data:
np.testing.assert_array_equal(data_row[0], expected)
def test_fillop_error_handling():
def gen():
yield (np.array([4, 4, 4, 4]),)
data = ds.GeneratorDataset(gen, column_names=["col"])
fill_op = data_trans.Fill("words")
data = data.map(input_columns=["col"], operations=fill_op)
with pytest.raises(RuntimeError) as error_info:
for data_row in data:
print(data_row)
assert "Types do not match" in repr(error_info.value)
if __name__ == "__main__":
test_fillop_basic()
test_fillop_up_type_cast()
test_fillop_down_type_cast()
test_fillop_string()
test_fillop_error_handling()