mindspore/tests/ut/python/dataset/test_bounding_box_augment.py

295 lines
12 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the bounding box augment op in DE
"""
from enum import Enum
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
class BoxType(Enum):
"""
Defines box types for test cases
"""
WidthOverflow = 1
HeightOverflow = 2
NegativeXY = 3
OnEdge = 4
WrongShape = 5
def add_bad_annotation(img, bboxes, box_type):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:param box_type: type of bad box
:return: bboxes with bad examples added
"""
height = img.shape[0]
width = img.shape[1]
if box_type == BoxType.WidthOverflow:
# use box that overflows on width
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.HeightOverflow:
# use box that overflows on height
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.NegativeXY:
# use box with negative xy
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.OnEdge:
# use box that covers the whole image
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
if box_type == BoxType.WrongShape:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
return img, bboxes
def check_bad_box(data, box_type, expected_error):
"""
:param data: de object detection pipeline
:param box_type: type of bad box
:param expected_error: error expected to get due to bad box
:return: None
"""
try:
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
1) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to use width overflow
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bboxes: add_bad_annotation(img, bboxes, box_type))
# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
for _, _ in enumerate(data.create_dict_iterator()):
break
except RuntimeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert expected_error in str(error)
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
return bboxes
def add_bounding_boxes(axis, bboxes):
"""
:param axis: axis to modify
:param bboxes: bounding boxes to draw on the axis
:return: None
"""
for bbox in bboxes:
rect = patches.Rectangle((bbox[0], bbox[1]),
bbox[2], bbox[3],
linewidth=1, edgecolor='r', facecolor='none')
# Add the patch to the Axes
axis.add_patch(rect)
def visualize(unaugmented_data, augment_data):
"""
:param unaugmented_data: original data
:param augment_data: data after augmentations
:return: None
"""
for idx, (un_aug_item, aug_item) in \
enumerate(zip(unaugmented_data.create_dict_iterator(),
augment_data.create_dict_iterator())):
axis = plt.subplot(141)
plt.imshow(un_aug_item["image"])
add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes
plt.title("Original" + str(idx + 1))
logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"])
axis = plt.subplot(142)
plt.imshow(aug_item["image"])
add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes
plt.title("Augmented" + str(idx + 1))
logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n")
plt.show()
def test_bounding_box_augment_with_rotation_op(plot=False):
"""
Test BoundingBoxAugment op
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_rotation_op")
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
if plot:
visualize(data_voc1, data_voc2)
def test_bounding_box_augment_with_crop_op(plot=False):
"""
Test BoundingBoxAugment op
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_crop_op")
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(90), 1)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
if plot:
visualize(data_voc1, data_voc2)
def test_bounding_box_augment_valid_ratio_c(plot=False):
"""
Test RandomHorizontalFlipWithBBox op
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_ratio_c")
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
if plot:
visualize(data_voc1, data_voc2)
def test_bounding_box_augment_invalid_ratio_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid input probability
"""
logger.info("test_bounding_box_augment_invalid_ratio_c")
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# ratio range is from 0 - 1
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
data_voc2 = data_voc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
data_voc2 = data_voc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_bounding_box_augment_invalid_bounds_c():
"""
Test BoundingBoxAugment op with invalid bboxes.
"""
logger.info("test_bounding_box_augment_invalid_bounds_c")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_bounding_box_augment_with_rotation_op(False)
test_bounding_box_augment_with_crop_op(False)
test_bounding_box_augment_valid_ratio_c(False)
test_bounding_box_augment_invalid_ratio_c()
test_bounding_box_augment_invalid_bounds_c()